A Feasible Trust-Region Sequential Quadratic Programming Algorithm

An algorithm for smooth nonlinear constrained optimization problems is described, in which a sequence of feasible iterates is generated by solving a trust-region sequential quadratic programming (SQP) subproblem at each iteration, and perturbing the resulting step to retain feasibility of each iterate. By retaining feasibility, the algorithm avoids several complications of other trust-region SQP approaches: … Read more

Nonlinear Model Predictive Control via Feasibility-Perturbed Sequential Quadratic Programming

Model predictive control requires the solution of a sequence of continuous optimization problems that are nonlinear if a nonlinear model is used for the plant. We describe briefly a trust-region feasibility-perturbed sequential quadratic programming algorithm (developed in a companion report), then discuss its adaptation to the problems arising in nonlinear model predictive control. Computational experience … Read more

A Simplified/Improved HKM Direction for Certain Classes of Semidefinite Programming

Semidefinite Programming (SDP) provides strong bounds for many NP-hard combinatorial problems. Arguably the most popular/efficient search direction for solving SDPs using a primal-dual interior point (p-d i-p) framework is the {\em HKM direction}. This direction is a Newton direction found from the linearization of a symmetrized version of the optimality conditions. For many of the … Read more

Interior-Point Methods for Nonconvex Nonlinear Programming: Complementarity Constraints

In this paper, we present the formulation and solution of optimization problems with complementarity constraints using an interior-point method for nonconvex nonlinear programming. We identify possible difficulties that could arise, such as unbounded faces of dual variables, linear dependence of constraint gradients and initialization issues. We suggest remedies. We include encouraging numerical results on the … Read more

Minimizing nonconvex nonsmooth functions via cutting planes and proximity control

We describe an extension of the classical cutting plane algorithm to tackle the unconstrained minimization of a nonconvex, not necessarily differentiable function of several variables. The method is based on the construction of both a lower and an upper polyhedral approximation to the objective function and it is related to the use of the concept … Read more

A Primal-Dual Interior-Point Method for Nonlinear Programming with Strong Global and Local Convergence Properties.

An exact-penalty-function-based scheme—inspired from an old idea due to Mayne and Polak (Math. Prog., vol.~11, 1976, pp.~67–80)—is proposed for extending to general smooth constrained optimization problems any given feasible interior-point method for inequality constrained problems. It is shown that the primal-dual interior-point framework allows for a simpler penalty parameter update rule than that discussed and … Read more

On graphs with stability number equal to the optimal value of a convex quadratic program

Since the Motzkin-Straus result on the clique number of graphs, published in 1965, where they show that the size of the largest clique in a graph can be obtained by solving a quadratic programming problem, several results on the continuous approach to the determination of the clique number of a graph or, equivalently, to the … Read more

A new exact penalty function

For constrained smooth or nonsmooth optimization problems, new continuously differentiable penalty functions are derived. They are proved exact in the sense that under some nondegeneracy assumption, local optimizers of a nonlinear program are precisely the optimizers of the associated penalty function. This is achieved by augmenting the dimension of the program by a variable that … Read more

Model Problems for the Multigrid Optimization of Systems Governed by Differential Equations

We present a multigrid approach to the optimization of systems governed by differential equations. Such optimization problems have many applications, and are a broader class of problems than systems of equations. Using several model problems we give evidence (both theoretical and numerical) that a multigrid approach can often be successful in the setting of optimization. … Read more

Pattern Search Methods for User-Provided Points:Application to Molecular Geometry Problems

This paper deals with the application of pattern search methods to the numerical solution of a class of molecular geometry problems with important applications in molecular physics and chemistry. The goal is to find a configuration of a cluster or a molecule with minimum total energy. The minimization problems in this class of geometry molecular … Read more