A Polyhedral Characterization of Linearizable Quadratic Combinatorial Optimization Problems

We introduce a polyhedral framework for characterizing instances of quadratic combinatorial optimization programs (QCOPs) as being linearizable, meaning that the quadratic objective can be equivalently rewritten as linear in such a manner that preserves the objective function value at all feasible solutions. In particular, we show that an instance is linearizable if and only if … Read more

Uncertainty Quantification for Multiobjective Stochastic Convex Quadratic Programs

A multiobjective stochastic convex quadratic program (MOSCQP) is a multiobjective optimization problem with convex quadratic objectives that are observed with stochastic error. MOSCQP is a useful problem formulation arising, for example, in model calibration and nonlinear system identification when a single regression model combines data from multiple distinct sources, resulting in a multiobjective least squares … Read more

Problem-Parameter-Free Decentralized Nonconvex Stochastic Optimization

Existing decentralized algorithms usually require knowledge of problem parameters for updating local iterates. For example, the hyperparameters (such as learning rate) usually require the knowledge of Lipschitz constant of the global gradient or topological information of the communication networks, which are usually not accessible in practice. In this paper, we propose D-NASA, the first algorithm … Read more

A new proximal gradient algorithm for solving mixed variational inequality problems with a novel explicit stepsize and applications

In this paper, we propose a new algorithm for solving monotone mixed variational inequality problems in real Hilbert spaces based on proximal gradient method. Our new algorithm uses a novel explicit stepsize which is proved to be increasing to a positive value. This property plays an important role in improving the speed of the algorithm. … Read more

Riemannian trust-region methods for strict saddle functions with complexity guarantees

The difficulty of minimizing a nonconvex function is in part explained by the presence of saddle points. This slows down optimization algorithms and impacts worst-case complexity guarantees. However, many nonconvex problems of interest possess a favorable structure for optimization, in the sense that saddle points can be escaped efficiently by appropriate algorithms. This strict saddle … Read more

Extending the Reach of First-Order Algorithms for Nonconvex Min-Max Problems with Cohypomonotonicity

We focus on constrained, \(L\)-smooth, nonconvex-nonconcave min-max problems either satisfying \(\rho\)-cohypomonotonicity or admitting a solution to the \(\rho\)-weakly Minty Variational Inequality (MVI), where larger values of the parameter \(\rho>0\) correspond to a greater degree of nonconvexity. These problem classes include examples in two player reinforcement learning, interaction dominant min-max problems, and certain synthetic test problems on … Read more

Using Filter Methods to Guide Convergence for ADMM, with Applications to Nonnegative Matrix Factorization Problems

Nonconvex, nonlinear cost functions arise naturally in physical inverse problems and machine learning. The alternating direction method of multipliers (ADMM) has seen extensive use in these applications, despite exhibiting uncertain convergence behavior in many practical nonconvex settings, and struggling with general nonlinear constraints. In contrast, filter methods have proved effective in enforcing convergence for sequential … Read more

Riemannian Bilevel Optimization

In this work, we consider the bilevel optimization problem on Riemannian manifolds. We inspect the calculation of the hypergradient of such problems on general manifolds and thus enable the utilization of gradient-based algorithms to solve such problems. The calculation of the hypergradient requires utilizing the notion of Riemannian cross-derivative and we inspect the properties and … Read more

Lipschitz Based Lower Bound Construction for Surrogate Optimization

Bounds play a vital role in guiding optimization algorithms by enhancing convergence, improving solution quality, and quantifying optimality gaps. While Lipschitz-based lower bounds are well-established, their effectiveness is often constrained by the function’s topological properties. To address these limitations, we propose an approach that integrates nonlinear distance metrics with surrogate approximations, yielding more adaptive and … Read more

Refined TSSOS

The moment-sum of squares hierarchy by Lasserre has become an established technique for solving polynomial optimization problems. It provides a monotonically increasing series of tight bounds, but has well-known scalability limitations. For structured optimization problems, the term-sparsity SOS (TSSOS) approach scales much better due to block-diagonal matrices, obtained by completing the connected components of adjacency … Read more