Second-order Partial Outer Convexification for Switched Dynamical Systems

Mixed-integer optimal control problems arise in many practical applications combining nonlinear, dynamic, and combinatorial features. To cope with the resulting complexity, several approaches have been suggested in the past. Some of them rely on solving a reformulated and relaxed control problem, referred to as partial outer convexification. Inspired by an efficient algorithm for switching time … Read more

On enhanced KKT optimality conditions for smooth nonlinear optimization

The Fritz-John (FJ) and KKT conditions are fundamental tools for characterizing minimizers and form the basis of almost all methods for constrained optimization. Since the seminal works of Fritz John, Karush, Kuhn and Tucker, FJ/KKT conditions have been enhanced by adding extra necessary conditions. Such an extension was initially proposed by Hestenes in the 1970s … Read more

CDOpt: A Python Package for a Class of Riemannian Optimization

Optimization over the embedded submanifold defined by constraints $c(x) = 0$ has attracted much interest over the past few decades due to its wide applications in various areas, including computer vision, signal processing, numerical linear algebra, and deep learning. Plenty of related optimization packages have been developed based on Riemannian optimization approaches, which rely on … Read more

Optimization of the first Dirichlet Laplacian eigenvalue with respect to a union of balls

The problem of minimizing the first eigenvalue of the Dirichlet Laplacian with respect to a union of m balls with fixed identical radii and variable centers in the plane is investigated in the present work. The existence of a minimizer is shown and the shape sensitivity analysis of the eigenvalue with respect to the centers’ … Read more

Computing the Completely Positive Factorization via Alternating Minimization

In this article, we propose a novel alternating minimization scheme for finding completely positive factorizations. In each iteration, our method splits the original factorization problem into two optimization subproblems, the first one being a orthogonal procrustes problem, which is taken over the orthogoal group, and the second one over the set of entrywise positive matrices. … Read more

A Voronoi-Based Mixed-Integer Gauss-Newton Algorithm for MINLP Arising in Optimal Control

We present a new algorithm for addressing nonconvex Mixed-Integer Nonlinear Programs (MINLPs) where the cost function is of nonlinear least squares form. We exploit this structure by leveraging a Gauss-Newton quadratic approximation of the original MINLP, leading to the formulation of a Mixed-Integer Quadratic Program (MIQP), which can be solved efficiently. The integer solution of the … Read more

An improvement of the Goldstein line search

This paper introduces CLS, a new line search along an arbitrary smooth search path, that starts at the current iterate tangentially to a descent direction. Like the Goldstein line search and unlike the Wolfe line search, the new line search uses, beyond the gradient at the current iterate, only function values. Using this line search … Read more

Iteration Complexity of Fixed-Step Methods by Nesterov and Polyak for Convex Quadratic Functions

This note considers the momentum method by Polyak and the accelerated gradient method by Nesterov, both without line search but with fixed step length applied to strictly convex quadratic functions assuming that exact gradients are used and appropriate upper and lower bounds for the extreme eigenvalues of the Hessian matrix are known. Simple 2-d-examples show … Read more

Subsampled cubic regularization method for finite-sum minimization

This paper proposes and analyzes  a  subsampled Cubic Regularization Method  (CRM) for solving  finite-sum optimization problems.  The new method uses  random subsampling techniques  to approximate  the  functions, gradients and Hessians in order to reduce the overall computational cost of the CRM. Under suitable hypotheses,  first- and second-order  iteration-complexity bounds and global convergence analyses  are presented. … Read more

Joint MSE Constrained Hybrid Beamforming and Reconfigurable Intelligent Surface

In this paper, the symbol detection mean squared error (MSE) constrained hybrid analog and digital beamforming is proposed in millimeter wave (mmWave) system, and the reconfigurable intelligent surface (RIS) is proposed to assist the mmWave system. The inner majorization-minimization (iMM) method is proposed to obtain analog transmitter, RIS and analog receivers, and the alternating direction … Read more