A Single-Loop Algorithm for Decentralized Bilevel Optimization

Bilevel optimization has gained significant attention in recent years due to its broad applications in machine learning. This paper focuses on bilevel optimization in decentralized networks and proposes a novel single-loop algorithm for solving decentralized bilevel optimization with a strongly convex lower-level problem. Our approach is a fully single-loop method that approximates the hypergradient using … Read more

Relaxation strength for multilinear optimization: McCormick strikes back

We consider linear relaxations for multilinear optimization problems. In a recent paper, Khajavirad proved that the extended flower relaxation is at least as strong as the relaxation of any recursive McCormick linearization (Operations Research Letters 51 (2023) 146-152). In this paper we extend the result to more general linearizations, and present a simpler proof. Moreover, … Read more

Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems

At each iteration of the Safeguarded Augmented Lagrangian algorithm Algencan, a bound-constrained subproblem consisting of the minimization of the Powell-Hestenes-Rockafellar augmented Lagrangian function is considered, for which a minimizer with tolerance tending to zero is sought. More precisely, a point that satisfies a subproblem first-order necessary optimality condition with tolerance tending to zero is required. … Read more

Fixed point continuation algorithm with extrapolation for Schatten p-quasi-norm regularized matrix optimization problems

In this paper, we consider a general low-rank matrix optimization problem which is modeled by a general Schatten p-quasi-norm (${\rm 0<p<1}$) regularized matrix optimization. For this nonconvex nonsmooth and non-Lipschitz matrix optimization problem, based on the matrix p-thresholding operator, we first propose a fixed point continuation algorithm with extrapolation (FPCAe) for solving it. Secondly, we … Read more

DC programming approach for solving a class of bilevel partial facility interdiction problems

We propose a new approach based DC programming for fnding a solution of the partial facility interdiction problem that belongs to the class of bilevel programming. This model was frst considered in the work of Aksen et al. [1] with a heuristic algorithm named multi-start simplex search (MSS). However, because of the big number of … Read more

M-stationarity of Local Minimizers of MPCCs and Convergence of NCP-based Methods

This paper focuses on solving mathematical programs with complementarity constraints (MPCCs) by assuming neither MPCC linear independence constraint qualification (MPCC-LICQ) nor lower/upper level strict complementarity at the solution. First, necessary conditions for MPCC local optimality and sufficient conditions for convergence to B-stationarity are investigated. Under MPCC-Abadie constraint qualification (MPCC-ACQ), we show that a local minimizer … Read more

Bi-level multi-criteria optimization to include linear energy transfer into proton treatment planning

In proton therapy treatment planning, the aim is to ensure tumor control while sparing the various surrounding risk structures. The biological effect of the irradiation depends on both physical dose and linear energy transfer (LET). In order to include LET alongside physical dose in plan creation, we propose to formulate the proton treatment planning problem … Read more

Trajectory Optimization of Unmanned Aerial Vehicles in the Electromagnetic Environment

We consider a type of routing problems common in defence and security, in which we control a fleet of unmanned aerial vehicles (UAVs) that have to reach one or more target locations without being detected by an adversary. Detection can be carried out by a variety of sensors (radio receivers, cameras, personnel, etc) placed by … Read more

Continuous exact relaxation and alternating proximal gradient algorithm for partial sparse and partial group sparse optimization problems

In this paper, we consider a partial sparse and partial group sparse optimization problem, where the loss function is a continuously differentiable function (possibly nonconvex), and the penalty term consists of two parts associated with sparsity and group sparsity. The first part is the $\ell_0$ norm of ${\bf x}$, the second part is the $\ell_{2,0}$ … Read more