MGProx: A nonsmooth multigrid proximal gradient method with adaptive restriction for strongly convex optimization

We study the combination of proximal gradient descent with multigrid for solving a class of possibly nonsmooth strongly convex optimization problems. We propose a multigrid proximal gradient method called MG-Prox, which accelerates the proximal gradient method by multigrid, based on using hierarchical information of the optimization problem. MGProx applies a newly introduced adaptive restriction operator … Read more

Projection free methods on product domains

Projection-free block-coordinate methods avoid high computational cost per iteration and at the same time exploit the particular problem structure of product domains. Frank-Wolfe-like approaches rank among the most popular ones of this type. However, as observed in the literature, there was a gap between the classical Frank-Wolfe theory and the block-coordinate case. Moreover, most of … Read more

Force-Controlled Pose Optimization and Trajectory Planning for Chained Stewart Platforms

We study optimization methods applied to minimizing forces for poses and movements of chained Stewart platforms (SPs) that we call an “Assembler” Robot. These chained SPs are parallel mechanisms that are stronger, stiffer, and more precise, on average, than their serial counterparts at the cost of a smaller range of motion. Linking these units in … Read more

On the paper “Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem”

In the paper [Torrealba, E.M.R. et al. Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem. EJOR, 299(1) 46–59, 2021] an augmented Lagrangian algorithm was proposed for resource allocation problems with the intriguing characteristic that instead of solving the box-constrained augmented Lagrangian subproblem, they propose projecting the solution of the unconstrained subproblem onto … Read more

A classification method based on a cloud of spheres

In this article we propose a binary classification model to distinguish a specific class that corresponds to a characteristic that we intend to identify (fraud, spam, disease). The classification model is based on a cloud of spheres that circumscribes the points of the class to be identified. It is intended to build a model based … Read more

Enhancements of Discretization Approaches for Non-Convex Mixed-Integer Quadratically Constraint Quadratic Programming: Part II

Abstract. This is Part II of a study on mixed-integer programming (MIP) relaxation techniques for the solution of non-convex mixed-integer quadratically constrained quadratic programs (MIQCQPs). We set the focus on MIP relaxation methods for non-convex continuous variable products and extend the well-known MIP relaxation normalized multiparametric disaggregation technique (NMDT), applying a sophisticated discretization to both … Read more

On an iteratively reweighted linesearch based algorithm for nonconvex composite optimization

In this paper we propose a new algorithm for solving a class of nonsmooth nonconvex problems, which is obtained by combining the iteratively reweighted scheme with a finite number of forward–backward iterations based on a linesearch procedure. The new method overcomes some limitations of linesearch forward–backward methods, since it can be applied also to minimize … Read more

A Novel Stepsize for Gradient Descent Method

In this paper, we propose a novel stepsize for the classical gradient descent scheme to solve unconstrained nonlinear optimization problems. We are concerned with the convex and smooth objective without the globally Lipschitz gradient condition. Our new method just needs the locally Lipschitz gradient but still gets the rate $O(\frac{1}{k})$ of $f(x^k)-f_*$ at most. By … Read more

Gas Transport Network Optimization: PDE-Constrained Models

The optimal control of gas transport networks was and still is a very important topic for modern economies and societies. Accordingly, a lot of research has been carried out on this topic during the last years and decades. Besides mixed-integer aspects in gas transport network optimization, one of the main challenges is that a physically … Read more

Barzilai-Borwein-like rules in proximal gradient schemes for ℓ1−regularized problems

We propose a novel steplength selection rule in proximal gradient methods for minimizing the sum of a differentiable function plus an ℓ1-norm penalty term. The proposed rule modifies one of the classical Barzilai-Borwein steplength, extending analogous results obtained in the context of gradient projection methods for constrained optimization. We analyze the spectral properties of the … Read more