Spectral Projected Subgradient Method for Nonsmooth Convex Optimization Problems

We consider constrained optimization problems with a nonsmooth objective function in the form of mathematical expectation. The Sample Average Approximation (SAA) is used to estimate the objective function and variable sample size strategy is employed. The proposed algorithm combines an SAA subgradient with the spectral coefficient in order to provide a suitable direction which improves … Read more

A filter sequential adaptive cubic regularisation algorithm for nonlinear constrained optimization

In this paper, we propose a filter sequential adaptive regularisation algorithm using cubics (ARC) for solving nonlinear equality constrained optimization. Similar to sequential quadratic programming methods, an ARC subproblem with linearized constraints is considered to obtain a trial step in each iteration. Composite step methods and reduced Hessian methods are employed to tackle the linearized … Read more

Condensed interior-point methods: porting reduced-space approaches on GPU hardware

The interior-point method (IPM) has become the workhorse method for nonlinear programming. The performance of IPM is directly related to the linear solver employed to factorize the Karush–Kuhn–Tucker (KKT) system at each iteration of the algorithm. When solving large-scale nonlinear problems, state-of-the art IPM solvers rely on efficient sparse linear solvers to solve the KKT … Read more

Convergence rates of the stochastic alternating algorithm for bi-objective optimization

Stochastic alternating algorithms for bi-objective optimization are considered when optimizing two conflicting functions for which optimization steps have to be applied separately for each function. Such algorithms consist of applying a certain number of steps of gradient or subgradient descent on each single objective at each iteration. In this paper, we show that stochastic alternating … Read more

Dissolving Constraints for Riemannian Optimization

In this paper, we consider optimization problems over closed embedded submanifolds of $\mathbb{R}^n$, which are defined by the constraints $c(x) = 0$. We propose a class of constraint dissolving approaches for these Riemannian optimization problems. In these proposed approaches, solving a Riemannian optimization problem is transferred into the unconstrained minimization of a constraint dissolving function … Read more

An approximation algorithm for optimal piecewise linear approximations of bounded variable products

We investigate the optimal piecewise linear interpolation of the bivariate product xy over rectangular domains. More precisely, our aim is to minimize the number of simplices in the triangulation underlying the interpolation, while respecting a prescribed approximation error. First, we show how to construct optimal triangulations consisting of up to five simplices. Using these as … Read more

Convergence properties of an Objective-Function-Free Optimization regularization algorithm, including an $\mathcal{O}(\epsilon^{-3/2})$ complexity bound

An adaptive regularization algorithm for unconstrained nonconvex optimization is presented in which the objective function is never evaluated, but only derivatives are used. This algorithm belongs to the class of adaptive regularization methods, for which optimal worst-case complexity results are known for the standard framework where the objective function is evaluated. It is shown in … Read more

Riemannian Stochastic Proximal Gradient Methods for Nonsmooth Optimization over the Stiefel Manifold

Riemannian optimization has drawn a lot of attention due to its wide applications in practice. Riemannian stochastic first-order algorithms have been studied in the literature to solve large-scale machine learning problems over Riemannian manifolds. However, most of the existing Riemannian stochastic algorithms require the objective function to be differentiable, and they do not apply to … Read more

The Combinatorial Brain Surgeon: Pruning Weights That Cancel One Another in Neural Networks

Neural networks tend to achieve better accuracy with training if they are larger — even if the resulting models are overparameterized. Nevertheless, carefully removing such excess parameters before, during, or after training may also produce models with similar or even improved accuracy. In many cases, that can be curiously achieved by heuristics as simple as … Read more

Limits of eventual families of sets with application to algorithms for the common fixed point problem

We present an abstract framework for asymptotic analysis of convergence based on the notions of eventual families of sets that we define. A family of subsets of a given set is called here an “eventual family” if it is upper hereditary with respect to inclusion. We define accumulation points of eventual families in a Hausdorff … Read more