Progressively Sampled Equality-Constrained Optimization

An algorithm is proposed, analyzed, and tested for solving continuous nonlinear-equality-constrained optimization problems where the constraints are defined by an expectation or an average over a large (finite) number of terms. The main idea of the algorithm is to solve a sequence of equality-constrained problems, each involving a finite sample of constraint-function terms, over which … Read more

A Riemannian AdaGrad-Norm Method

We propose a manifold AdaGrad-Norm method (\textsc{MAdaGrad}), which extends the norm version of AdaGrad (AdaGrad-Norm) to Riemannian optimization. In contrast to line-search schemes, which may require several exponential map computations per iteration, \textsc{MAdaGrad} requires only one. Assuming the objective function $f$ has Lipschitz continuous Riemannian gradient, we show that the method requires at most $\mathcal{O}(\varepsilon^{-2})$ … Read more

On the Convergence and Properties of a Proximal-Gradient Method on Hadamard Manifolds

In this paper, we address composite optimization problems on Hadamard manifolds, where the objective function is given by the sum of a smooth term (not necessarily convex) and a convex term (not necessarily differentiable). To solve this problem, we develop a proximal gradient method defined directly on the manifold, employing a strategy that enforces monotonicity … Read more

Machine Learning Algorithms for Improving Black Box Optimization Solvers

Black-box optimization (BBO) addresses problems where objectives are accessible only through costly queries without gradients or explicit structure. Classical derivative-free methods—line search, direct search, and model-based solvers such as Bayesian optimization—form the backbone of BBO, yet often struggle in high-dimensional, noisy, or mixed-integer settings. Recent advances use machine learning (ML) and reinforcement learning (RL) to … Read more

Sequential test sampling for stochastic derivative-free optimization

In many derivative-free optimization algorithms, a sufficient decrease condition decides whether to accept a trial step in each iteration. This condition typically requires that the potential objective function value decrease of the trial step, i.e., the true reduction in the objective function value that would be achieved by moving from the current point to the … Read more

Sequential test sampling for stochastic derivative-free optimization

In many derivative-free optimization algorithms, a sufficient decrease condition decides whether to accept a trial step in each iteration. This condition typically requires that the potential objective function value decrease of the trial step, i.e., the true reduction in the objective function value that would be achieved by moving from the current point to the … Read more

Gradient Methods with Online Scaling Part II. Practical Aspects

Part I of this work [Gao25] establishes online scaled gradient methods (OSGM), a framework that utilizes online convex optimization to adapt stepsizes in gradient methods. This paper focuses on the practical aspects of OSGM. We leverage the OSGM framework to design new adaptive first-order methods and provide insights into their empirical behavior. The resulting method, … Read more

Properties of Enclosures in Multiobjective Optimization

A widely used approximation concept in multiobjective optimization is the concept of enclosures. These are unions of boxes defined by lower and upper bound sets that are used to cover optimal sets of multiobjective optimization problems in the image space. The width of an enclosure is taken as a quality measure. In this paper, we … Read more

Visiting exactly once all the vertices of {0,1,2}^3 with a 13-segment path that avoids self-crossing

In the Euclidean space \(\mathbb{R}^3\), we ask whether one can visit each of the \(27\) vertices of the grid \(G_3:=\{0,1,2\}^3\) exactly once using as few straight-line segments, connected end to end, as possible (an optimal polygonal chain). We give a constructive proof that there exists a \(13\)-segment perfect simple path (i.e., an optimal chain that … Read more

Alternating Iteratively Reweighted \(\ell_1\) and Subspace Newton Algorithms for Nonconvex Sparse Optimization

This paper presents a novel hybrid algorithm for minimizing the sum of a continuously differentiable loss function and a nonsmooth, possibly nonconvex, sparsity‑promoting regularizer. The proposed method adaptively switches between solving a reweighted \(\ell_1\)-regularized subproblem and performing an inexact subspace Newton step. The reweighted \(\ell_1\)-subproblem admits an efficient closed-form solution via the soft-thresholding operator, thereby … Read more