A FISTA-type accelerated gradient algorithm for solving smooth nonconvex composite optimization problems

In this paper, we describe and establish iteration-complexity of two accelerated composite gradient (ACG) variants to solve a smooth nonconvex composite optimization problem whose objective function is the sum of a nonconvex differentiable function f with a Lipschitz continuous gradient and a simple nonsmooth closed convex function h. When f is convex, the first ACG … Read more

Solving Chance-Constrained Problems via a Smooth Sample-Based Nonlinear Approximation

We introduce a new method for solving nonlinear continuous optimization problems with chance constraints. Our method is based on a reformulation of the probabilistic constraint as a quantile function. The quantile function is approximated via a differentiable sample average approximation. We provide theoretical statistical guarantees of the approximation, and illustrate empirically that the reformulation can … Read more

Projections onto the canonical simplex with additional linear inequalities

We consider the distributionally robust optimization and show that computing the distributional worst-case is equivalent to computing the projection onto the canonical simplex with additional linear inequality. We consider several distance functions to measure the distance of distributions. We write the projections as optimization problems and show that they are equivalent to finding a zero … Read more

A Proximal Interior Point Algorithm with Applications to Image Processing

In this article, we introduce a new proximal interior point algorithm (PIPA). This algorithm is able to handle convex optimization problems involving various constraints where the objective function is the sum of a Lipschitz differentiable term and a possibly nonsmooth one. Each iteration of PIPA involves the minimization of a merit function evaluated for decaying … Read more

A Theoretical and Empirical Comparison of Gradient Approximations in Derivative-Free Optimization

In this paper, we analyze several methods for approximating gradients of noisy functions using only function values. These methods include finite differences, linear interpolation, Gaussian smoothing and smoothing on a unit sphere. The methods differ in the number of functions sampled, the choice of the sample points, and the way in which the gradient approximations … Read more

Tensor Methods for Minimizing Convex Functions with Hölder Continuous Higher-Order Derivatives

In this paper we study p-order methods for unconstrained minimization of convex functions that are p-times differentiable with $\nu$-Hölder continuous pth derivatives. We propose tensor schemes with and without acceleration. For the schemes without acceleration, we establish iteration complexity bounds of $\mathcal{O}\left(\epsilon^{-1/(p+\nu-1)}\right)$ for reducing the functional residual below a given $\epsilon\in (0,1)$. Assuming that $\nu$ … Read more

Stability Analysis for a Class of Sparse Optimization Problems

The sparse optimization problems arise in many areas of science and engineering, such as compressed sensing, image processing, statistical and machine learning. The $\ell_{0}$-minimization problem is one of such optimization problems, which is typically used to deal with signal recovery. The $\ell_{1}$-minimization method is one of the plausible approaches for solving the $\ell_{0}$-minimization problems, and … Read more

Scalable Preconditioning of Block-Structured Linear Algebra Systems using ADMM

We study the solution of block-structured linear algebra systems arising in optimization by using iterative solution techniques. These systems are the core computational bottleneck of many problems of interest such as parameter estimation, optimal control, network optimization, and stochastic programming. Our approach uses a Krylov solver (GMRES) that is preconditioned with an alternating method of … Read more

Trust-region methods for the derivative-free optimization of nonsmooth black-box functions

In this paper we study the minimization of a nonsmooth black-box type function, without assuming any access to derivatives or generalized derivatives and without any knowledge about the analytical origin of the function nonsmoothness. Directional methods have been derived for such problems but to our knowledge no model-based method like a trust-region one has yet … Read more

A Class of Stochastic Variance Reduced Methods with an Adaptive Stepsize

Stochastic variance reduced methods have recently surged into prominence for solving large scale optimization problems in the context of machine learning. Tan, Ma and Dai et al. first proposed the new stochastic variance reduced gradient (SVRG) method with the Barzilai-Borwein (BB) method to compute step sizes automatically, which performs well in practice. On this basis, … Read more