Adaptive Sampling Strategies for Stochastic Optimization

In this paper, we propose a stochastic optimization method that adaptively controls the sample size used in the computation of gradient approximations. Unlike other variance reduction techniques that either require additional storage or the regular computation of full gradients, the proposed method reduces variance by increasing the sample size as needed. The decision to increase … Read more

Trust-Region Algorithms for Training Responses: Machine Learning Methods Using Indefinite Hessian Approximations

Machine learning (ML) problems are often posed as highly nonlinear and nonconvex unconstrained optimization problems. Methods for solving ML problems based on stochastic gradient descent are easily scaled for very large problems but may involve fine-tuning many hyper-parameters. Quasi-Newton approaches based on the limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) update typically do not require manually tuning hyper-parameters but … Read more

Convergence rates of accelerated proximal gradient algorithms under independent noise

We consider an accelerated proximal gradient algorithm for the composite optimization with “independent errors” (errors little related with historical information) for solving linear inverse problems. We present a new inexact version of FISTA algorithm considering deterministic and stochastic noises. We prove some convergence rates of the algorithm and we connect it with the current existing … Read more

Sieve-SDP: a simple facial reduction algorithm to preprocess semidefinite programs

We introduce Sieve-SDP, a simple algorithm to preprocess semidefinite programs (SDPs). Sieve-SDP belongs to the class of facial reduction algorithms. It inspects the constraints of the problem, deletes redundant rows and columns, and reduces the size of the variable matrix. It often detects infeasibility. It does not rely on any optimization solver: the only subroutine … Read more

A Self-Correcting Variable-Metric Algorithm Framework for Nonsmooth Optimization

An algorithm framework is proposed for minimizing nonsmooth functions. The framework is variable-metric in that, in each iteration, a step is computed using a symmetric positive definite matrix whose value is updated as in a quasi-Newton scheme. However, unlike previously proposed variable-metric algorithms for minimizing nonsmooth functions, the framework exploits self-correcting properties made possible through … Read more

Using Neural Networks to Detect Line Outages from PMU Data

We propose an approach based on neural networks and the AC power flow equations to identify single- and double- line outages in a power grid using the information from phasor measurement unit sensors (PMUs). Rather than inferring the outage from the sensor data by inverting the physical model, our approach uses the AC model to … Read more

Numerically tractable optimistic bilevel problems

We consider fully convex lower level standard optimistic bilevel problems. We show that this class of mathematical programs is sufficiently broad to encompass significant real-world applications. We establish that the critical points of a relaxation of the original problem correspond to the equilibria of a suitably defined generalized Nash equilibrium problem. The latter game is … Read more

Underestimate Sequences via Quadratic Averaging

In this work we introduce the concept of an Underestimate Sequence (UES), which is a natural extension of Nesterov’s estimate sequence. Our definition of a UES utilizes three sequences, one of which is a lower bound (or under-estimator) of the objective function. The question of how to construct an appropriate sequence of lower bounds is … Read more

Derivative-Free Robust Optimization by Outer Approximations

We develop an algorithm for minimax problems that arise in robust optimization in the absence of objective function derivatives. The algorithm utilizes an extension of methods for inexact outer approximation in sampling a potentially infinite-cardinality uncertainty set. Clarke stationarity of the algorithm output is established alongside desirable features of the model-based trust-region subproblems encountered. We … Read more

From Estimation to Optimization via Shrinkage

We study a class of quadratic stochastic programs where the distribution of random variables has unknown parameters. A traditional approach is to estimate the parameters using a maximum likelihood estimator (MLE) and to use this as input in the optimization problem. For the unconstrained case, we show that an estimator that “shrinks” the MLE towards … Read more