Universal Barrier is n-Self-Concordant

This paper shows that the self-concordance parameter of the universal barrier on any n-dimensional proper convex domain is upper bounded by n. This bound is tight and improves the previous O(n) bound by Nesterov and Nemirovski. The key to our main result is a pair of new, sharp moment inequalities for s-concave distributions, which could … Read more

Nonmonotone line searches for unconstrained multiobjective optimization problems

In the last two decades, many descent methods for multiobjective optimization problems were proposed. In particular, the steepest descent and the Newton methods were studied for the unconstrained case. In both methods, the search directions are computed by solving convex subproblems, and the stepsizes are obtained by an Armijo-type line search. As a consequence, the … Read more

Chance Constrained Programs with Gaussian Mixture Models

In this paper, we discuss input modeling and solution techniques for several classes of chance constrained programs (CCPs). We propose to use Gaussian mixture models (GMM), a semi-parametric approach, to fit the data available and to model the randomness. We demonstrate the merits of using GMM. We consider several scenarios that arise from practical applications … Read more

A Partial PPA block-wise ADMM for Multi-Block Constrained Separable Convex Optimization

The alternating direction method of multipliers(ADMM) has been proved to be effective for solving two-block separable convex optimization subject to linear constraints. However, it is not necessarily convergent when it is extended to multiple-block case directly. One remedy could be regrouping multiple-block variables into two groups firstly and then adopting the classic ADMM to the … Read more

Efficient global unconstrained black box optimization

For the unconstrained optimization of black box functions, this paper introduces a new randomized algorithm called VRBBO. In practice, VRBBO matches the quality of other state-of-the-art algorithms for finding, in small and large dimensions, a local minimizer with reasonable accuracy. Although our theory guarantees only local minimizers our heuristic techniques turn VRBBO into an efficient … Read more

Local convergence analysis of the Levenberg-Marquardt framework for nonzero-residue nonlinear least-squares problems under an error bound condition

The Levenberg-Marquardt method (LM) is widely used for solving nonlinear systems of equations, as well as nonlinear least-squares prob- lems. In this paper, we consider local convergence issues of the LM method when applied to nonzero-residue nonlinear least-squares problems under an error bound condition, which is weaker than requiring full-rank of the Jacobian in a … Read more

Adaptive Cubic Regularization methods with dynamic inexact Hessian information and applications to finite-sum minimization

We consider the Adaptive Regularization with Cubics approach for solving nonconvex optimization problems and propose a new variant based on inexact Hessian information chosen dynamically. The theoretical analysis of the proposed procedure is given. The key property of ARC framework, constituted by optimal worst-case function/derivative evaluation bounds for first- and second-order critical point, is guaranteed. … Read more

Bilevel optimization: theory, algorithms and applications

Bilevel optimization problems are hierarchical optimization problems where the feasible region of the so-called upper level problem is restricted by the graph of the solution set mapping of the lower level problem. Aim of this article is to collect a large number of references on this topic, to show the diversity of contributions and to … Read more

Asynchronous Sequential Inertial Iterations for Common Fixed Points Problems with an Application to Linear Systems

The common fixed points problem requires finding a point in the intersection of fixed points sets of a finite collection of operators. Quickly solving problems of this sort is of great practical importance for engineering and scientific tasks (e.g., for computed tomography). Iterative methods for solving these problems often employ a Krasnosel’skii-Mann type iteration. We … Read more

Accelerated Bregman Proximal Gradient Methods for Relatively Smooth Convex Optimization

We consider the problem of minimizing the sum of two convex functions: one is differentiable and relatively smooth with respect to a reference convex function, and the other can be nondifferentiable but simple to optimize. The relatively smooth condition is much weaker than the standard assumption of uniform Lipschitz continuity of the gradients, thus significantly … Read more