Tight Semidefinite Relaxations for Verifying Robustness of Neural Networks

For verifying the safety of neural networks (NNs), Fazlyab et al. (2019) introduced a semidefinite programming (SDP) approach called DeepSDP. This formulation can be viewed as the dual of the SDP relaxation for a problem formulated as a quadratically constrained quadratic program (QCQP). While SDP relaxations of QCQPs generally provide approximate solutions with some gaps, … Read more

On the Semidefinite Representability of Continuous Quadratic Submodular Minimization With Applications to Moment Problems

We show that continuous quadratic submodular minimization with bounds is solvable in polynomial time using semidefinite programming, and we apply this result to two moment problems arising in distributionally robust optimization and the computation of covariance bounds. Accordingly, this research advances the ongoing study of continuous submodular minimization and opens new application areas therein. ArticleDownload … Read more

Spherical Support Vector Machine for Interval-Valued Data

In this work we propose a generalization of the Spherical Support Vector Machine method, in which the separator is a sphere, applied to Interval-valued data. This type of data belongs to a more general class, known as Symbolic Data, for which features are described by sets, intervals or histograms instead of classic arrays. This paradigm … Read more

Constructing QCQP Instances Equivalent to Their SDP Relaxations

General quadratically constrained quadratic programs (QCQPs) are challenging to solve as they are known to be NP-hard. A popular approach to approximating QCQP solutions is to use semidefinite programming (SDP) relaxations. It is well-known that the optimal value η of the SDP relaxation problem bounds the optimal value ζ  of the QCQP from below, i.e., … Read more

A class of diagonal quasi-Newton penalty decomposition algorithms for sparse bound-constrained nonconvex optimization

This paper discusses an improved quasi-Newton penalty decomposition algorithm for the cardinality bound-constrained optimization problems whose simple bounds on the variables are assumed to be finite. Until an approximate stationary point is found, this algorithm approximates the solutions of a sequence of penalty subproblems by a two-block decomposition scheme. This scheme finds an approximate solution … Read more

Extended Triangle Inequalities for Nonconvex Box-Constrained Quadratic Programming

Let Box_n = {x in R^n : 0<= x <= e }, and let QPB_n denote the convex hull of {(1, x’)'(1, x’) : x  in Box_n}. The quadratic programming problem min{x’Q x + q’x : x in Box_n} where Q is not positive semidefinite (PSD), is equivalent to a linear optimization problem over QPB_n … Read more

Addressing Estimation Errors through Robust Portfolio Optimization

It is well known that the performance of the classical Markowitz model for portfolio optimization is extremely sensitive to estimation errors on the expected asset returns. Robust optimization mitigates this issue. We focus on ellipsoidal uncertainty sets around a point estimate of the expected asset returns. An important issue is the choice of the parameters … Read more

An analytical lower bound for a class of minimizing quadratic integer optimization problems

Lower bounds on minimization problems are essential for convergence of both branching-based and iterative solution methods for optimization problems. They are also required for evaluating the quality of feasible solutions by providing conservative optimality gaps. We provide an analytical lower bound for a class of quadratic optimization problems with binary decision variables. In contrast to … Read more

An inexact ADMM for separable nonconvex and nonsmooth optimization

An Inexact Alternating Direction Method of Multiplies (I-ADMM) with an expansion linesearch step was developed for solving a family of separable minimization problems subject to linear constraints, where the objective function is the sum of a smooth but possibly nonconvex function and a possibly nonsmooth nonconvex function. Global convergence and linear convergence rate of the … Read more