A single loop method for quadratic minmax optimization

We consider a quadratic minmax problem with coupled inner constraints and propose a method to compute a class of stationary points. To motivate the need to compute such stationary points, we first show that they are meaningful, in the sense that they can be locally optimal for our problem under suitable linear independence and second-order … Read more

A speed up strategy for gradient methods

In this paper, we propose a new acceleration strategy for gradient-based methods applied to strictly convex Quadratic Programming (QP) problems. The strategy consists in performing, at selected iterations, minimization steps along alternative descent directions or even within low-dimensional affine subspaces. In particular, considering the contribution of the linear and quadratic part of the objective function … Read more

Relaxations of KKT Conditions do not Strengthen Finite RLT and SDP-RLT Bounds for Nonconvex Quadratic Programs

We consider linear and semidefinite programming relaxations of nonconvex quadratic programs given by the reformulation-linearization technique (RLT relaxation), and the Shor relaxation combined with the RLT relaxation (SDP-RLT relaxation). By incorporating the first-order optimality conditions, a quadratic program can be formulated as an optimization problem with complementarity constraints. We investigate the effect of incorporating optimality … Read more

Tight Semidefinite Relaxations for Verifying Robustness of Neural Networks

For verifying the safety of neural networks (NNs), Fazlyab et al. (2019) introduced a semidefinite programming (SDP) approach called DeepSDP. This formulation can be viewed as the dual of the SDP relaxation for a problem formulated as a quadratically constrained quadratic program (QCQP). While SDP relaxations of QCQPs generally provide approximate solutions with some gaps, … Read more

On the Semidefinite Representability of Continuous Quadratic Submodular Minimization With Applications to Moment Problems

We show that continuous quadratic submodular minimization with bounds is solvable in polynomial time using semidefinite programming, and we apply this result to two moment problems arising in distributionally robust optimization and the computation of covariance bounds. Accordingly, this research advances the ongoing study of continuous submodular minimization and opens new application areas therein. ArticleDownload … Read more

qpBAMM: a parallelizable ADMM approach for block-structured quadratic programs

Block-structured quadratic programs (QPs) frequently arise in the context of the direct approach to solving optimal control problems. For successful application of direct optimal control algorithms to many real-world problems it is paramount that these QPs can be solved efficiently and reliably. Besides interior-point methods and active-set methods, ADMM-based quadratic programming approaches have gained popularity. … Read more

Spherical Support Vector Machine for Interval-Valued Data

In this work we propose a generalization of the Spherical Support Vector Machine method, in which the separator is a sphere, applied to Interval-valued data. This type of data belongs to a more general class, known as Symbolic Data, for which features are described by sets, intervals or histograms instead of classic arrays. This paradigm … Read more

Constructing QCQP Instances Equivalent to Their SDP Relaxations

General quadratically constrained quadratic programs (QCQPs) are challenging to solve as they are known to be NP-hard. A popular approach to approximating QCQP solutions is to use semidefinite programming (SDP) relaxations. It is well-known that the optimal value η of the SDP relaxation problem bounds the optimal value ζ  of the QCQP from below, i.e., … Read more

A class of diagonal quasi-Newton penalty decomposition algorithms for sparse bound-constrained nonconvex optimization

This paper discusses an improved quasi-Newton penalty decomposition algorithm for the cardinality bound-constrained optimization problems whose simple bounds on the variables are assumed to be finite. Until an approximate stationary point is found, this algorithm approximates the solutions of a sequence of penalty subproblems by a two-block decomposition scheme. This scheme finds an approximate solution … Read more