Recovering Risk-Neutral Probability Density Functions from Options Prices using Cubic Splines

We present a new approach to estimate the risk-neutral probability density function (pdf) of the future prices of an underlying asset from the prices of options written on the asset. The estimation is carried out in the space of cubic spline functions, yielding appropriate smoothness. The resulting optimization problem, used to invert the data and … Read more

Constrained optimization in seismic reflection tomography: an SQP augmented Lagrangian approach

Seismic reflection tomography is a method for determining a subsurface velocity model from the traveltimes of seismic waves reflecting on geological interfaces. From an optimization viewpoint, the problem consists in minimizing a nonlinear least-squares function measuring the mismatch between observed traveltimes and those calculated by ray tracing in this model. The introduction of a priori … Read more

An Iterative Solver-Based Infeasible Primal-Dual Path-Following Algorithm for Convex QP

In this paper we develop an interior-point primal-dual long-step path-following algorithm for convex quadratic programming (CQP) whose search directions are computed by means of an iterative (linear system) solver. We propose a new linear system, which we refer to as the \emph{augmented normal equation} (ANE), to determine the primal-dual search directions. Since the condition number … Read more

Global linear convergence of an augmented Lagrangian algorithm for solving convex quadratic optimization problems

We consider an augmented Lagrangian algorithm for minimizing a convex quadratic function subject to linear inequality constraints. Linear optimization is an important particular instance of this problem. We show that, provided the augmentation parameter is large enough, the constraint value converges {\em globally\/} linearly to zero. This property is viewed as a consequence of the … Read more

Quadratic interior-point methods in statistical disclosure control

The safe dissemination of statistical tabular data is one of the main concerns of National Statistical Institutes (NSIs). Although each cell of the tables is made up of the aggregated information of several individuals, the statistical confidentiality can be violated. NSIs must guarantee that no individual information can be derived from the released tables. One … Read more

Parallel Interior Point Solver for Structured Quadratic Programs: Application to Financial Planning Problems

Issues of implementation of a library for parallel interior-point methods for quadratic programming are addressed. The solver can easily exploit any special structure of the underlying optimization problem. In particular, it allows a nested embedding of structures and by this means very complicated real-life optimization problems can be modeled. The efficiency of the solver is … Read more

Gradient Projection Methods for Quadratic Programs and Applications in Training Support Vector Machines

Gradient projection methods based on the Barzilai-Borwein spectral steplength choices are considered for quadratic programming problems with simple constraints. Well known nonmonotone spectral projected gradient methods and variable projection methods are discussed. For both approaches the behavior of different combinations of the two spectral steplengths is investigated. A nw adaptive stplength alternating rule is proposed, … Read more

Rebalancing an Investment Portfolio in the Presence of Transaction Costs

The inclusion of transaction costs is an essential element of any realistic portfolio optimization. In this paper, we consider an extension of the standard portfolio problem in which transaction costs are incurred to rebalance an investment portfolio. The Markowitz framework of mean-variance efficiency is used with costs modelled as a percentage of the value transacted. … Read more

Sufficient Global Optimality Conditions for Bivalent Quadratic Optimization

We prove a sufficient global optimality condition for quadratic optimization with quadratic constraints where the variables are allowed to take -1 and 1 values. We extend the condition to quadratic programs with matrix variables and orthogonality conditions, and in particular, to the quadratic assignment problem. CitationBilkent University Technical Report, September 2002.ArticleDownload View PDF

On graphs with stability number equal to the optimal value of a convex quadratic program

Since the Motzkin-Straus result on the clique number of graphs, published in 1965, where they show that the size of the largest clique in a graph can be obtained by solving a quadratic programming problem, several results on the continuous approach to the determination of the clique number of a graph or, equivalently, to the … Read more