A Line-Search Descent Algorithm for Strict Saddle Functions with Complexity Guarantees

We describe a line-search algorithm which achieves the best-known worst-case complexity results for problems with a certain “strict saddle” property that has been observed to hold in low-rank matrix optimization problems. Our algorithm is adaptive, in the sense that it makes use of backtracking line searches and does not require prior knowledge of the parameters … Read more

High-order Evaluation Complexity of a Stochastic Adaptive Regularization Algorithm for Nonconvex Optimization Using Inexact Function Evaluations and Randomly Perturbed Derivatives

A stochastic adaptive regularization algorithm allowing random noise in derivatives and inexact function values is proposed for computing strong approximate minimizers of any order for inexpensively constrained smooth optimization problems. For an objective function with Lipschitz continuous p-th derivative in a convex neighbourhood of the feasible set and given an arbitrary optimality order q, it … Read more

Using gradient directions to get global convergence of Newton-type methods

The renewed interest in Steepest Descent (SD) methods following the work of Barzilai and Borwein [IMA Journal of Numerical Analysis, 8 (1988)] has driven us to consider a globalization strategy based on SD, which is applicable to any line-search method. In particular, we combine Newton-type directions with scaled SD steps to have suitable descent directions. … Read more

Variance Reduction of Stochastic Gradients Without Full Gradient Evaluation

A standard concept for reducing the variance of stochastic gradient approximations is based on full gradient evaluations every now and then. In this paper an approach is considered that — while approximating a local minimizer of a sum of functions — also generates approximations of the gradient and the function values without relying on full … Read more

Complexity iteration analysis for stongly convex multi-objective optimization using a Newton path-following procedure

In this note we consider the iteration complexity of solving strongly convex multi objective optimization. We discuss the precise meaning of this problem, and indicate it is loosely defined, but the most natural notion is to find a set of Pareto optimal points across a grid of scalarized problems. We derive that in most cases, … Read more

Expected complexity analysis of stochastic direct-search

This work presents the convergence rate analysis of stochastic variants of the broad class of direct-search methods of directional type. It introduces an algorithm designed to optimize differentiable objective functions $f$ whose values can only be computed through a stochastically noisy blackbox. The proposed stochastic directional direct-search (SDDS) algorithm accepts new iterates by imposing a … Read more

Properties of the delayed weighted gradient method

The delayed weighted gradient method, recently introduced in [13], is a low-cost gradient-type method that exhibits a surprisingly and perhaps unexpected fast convergence behavior that competes favorably with the well-known conjugate gradient method for the minimization of convex quadratic functions. In this work, we establish several orthogonality properties that add understanding to the practical behavior … Read more

A Hybrid Gradient Method for Strictly Convex Quadratic Programming

In this paper, a reliable hybrid algorithm for solving convex quadratic minimization problems is presented. At each iteration, two points are computed: first, an auxiliary point $\dot{x}_k$ is generated by performing a gradient step equipped with an optimal steplength, then, the next iterate $x_{k+1}$ is obtained through a weighted sum of $\dot{x}_k$ with the penultimate … Read more

Strong Evaluation Complexity Bounds for Arbitrary-Order Optimization of Nonconvex Nonsmooth Composite Functions

We introduce the concept of strong high-order approximate minimizers for nonconvex optimization problems. These apply in both standard smooth and composite non-smooth settings, and additionally allow convex or inexpensive constraints. An adaptive regularization algorithm is then proposed to find such approximate minimizers. Under suitable Lipschitz continuity assumptions, whenever the feasible set is convex, it is … Read more

Modeling Hessian-vector products in nonlinear optimization: New Hessian-free methods

In this paper, we suggest two ways of calculating interpolation models for unconstrained smooth nonlinear optimization when Hessian-vector products are available. The main idea is to interpolate the objective function using a quadratic on a set of points around the current one and concurrently using the curvature information from products of the Hessian times appropriate … Read more