OPM, a collection of Optimization Problems in Matlab

OPM is a small collection of CUTEst unconstrained and bound-constrained nonlinear optimization problems, which can be used in Matlab for testing optimization algorithms directly (i.e. without installing additional software). ArticleDownload View PDF

Convergence Analysis of Block Majorize-Minimize Subspace Approaches

Majorization-Minimization (MM) consists of a class of efficient and effective optimization algorithms that benefit from solid theoretical foundations. MM methods have shown their great ability to tackle efficiently challenging optimization problems from signal processing, image processing, inverse problems and machine learning. When processing large amount of data/variable, as it may happen in 3D image processing, … Read more

Analysis non-sparse recovery for non-convex relaxed $\ell_q$ minimization

This paper studies construction of signals, which are sparse or nearly sparse with respect to a tight frame $D$ from underdetermined linear systems. In the paper, we propose a non-convex relaxed $\ell_q(0 ArticleDownload View PDF

Nonlinear conjugate gradient for smooth convex functions

The method of nonlinear conjugate gradients (NCG) is widely used in practice for unconstrained optimization, but it satisfies weak complexity bounds at best when applied to smooth convex functions. In contrast, Nesterov’s accelerated gradient (AG) method is optimal up to constant factors for this class. However, when specialized to quadratic function, conjugate gradient is optimal … Read more

Bolstering Stochastic Gradient Descent with Model Building

Stochastic gradient descent method and its variants constitute the core optimization algorithms that achieve good convergence rates for solving machine learning problems. These rates are obtained especially when these algorithms are fine-tuned for the application at hand. Although this tuning process can require large computational costs, recent work has shown that these costs can be … Read more

Regularized Step Directions in Conjugate Gradient Minimization for Machine Learning

Conjugate gradient minimization methods (CGM) and their accelerated variants are widely used in machine learning applications. We focus on the use of cubic regularization to improve the CGM direction independent of the steplength (learning rate) computation. Using Shanno’s reformulation of CGM as a memoryless BFGS method, we derive new formulas for the regularized step direction, … Read more

A quasi-Newton method with Wolfe line searches for multiobjective optimization

We propose a BFGS method with Wolfe line searches for unconstrained multiobjective optimization problems. The algorithm is well defined even for general nonconvex problems. Global convergence and R-linear convergence to a Pareto optimal point are established for strongly convex problems. In the local convergence analysis, if the objective functions are locally strongly convex with Lipschitz … Read more

An extended delayed weighted gradient algorithm for solving strongly convex optimization problems

The recently developed delayed weighted gradient method (DWGM) is competitive with the well-known conjugate gradient (CG) method for the minimization of strictly convex quadratic functions. As well as the CG method, DWGM has some key optimality and orthogonality properties that justify its practical performance. The main difference with the CG method is that, instead of … Read more

Two limited-memory optimization methods with minimum violation of the previous quasi-Newton equations

Limited-memory variable metric methods based on the well-known BFGS update are widely used for large scale optimization. The block version of the BFGS update, derived by Schnabel (1983), Hu and Storey (1991) and Vl·cek and Luk·san (2019), satis¯es the quasi-Newton equations with all used di®erence vectors and for quadratic objective functions gives the best improvement … Read more

Derivative-free separable quadratic modeling and cubic regularization for unconstrained optimization

We present a derivative-free separable quadratic modeling and cubic regularization technique for solving smooth unconstrained minimization problems. The derivative-free approach is mainly concerned with building a quadratic model that could be generated by numerical interpolation or using a minimum Frobenious norm approach, when the number of points available does not allow to build a complete … Read more