Scalable Stochastic Optimization of Complex Energy Systems

We present a scalable approach and implementation for solving stochastic programming problems, with application to the optimization of complex energy systems under uncertainty. Stochastic programming is used to make decisions in the present while incorporating a model of uncertainty about future events (scenarios). These problems present serious computational difficulties as the number of scenarios becomes … Read more

CONSTRAINED POLYNOMIAL OPTIMIZATION PROBLEMS WITH NONCOMMUTING VARIABLES

In this paper we study constrained eigenvalue optimization of noncommutative (nc) polynomials, focusing on the polydisc and the ball. Our three main results are as follows: (1) an nc polynomial is nonnegative if and only if it admits a weighted sum of hermitian squares decomposition; (2) (eigenvalue) optima for nc polynomials can be computed using … Read more

Projection methods in conic optimization

There exist efficient algorithms to project a point onto the intersection of a convex cone and an affine subspace. Those conic projections are in turn the work-horse of a range of algorithms in conic optimization, having a variety of applications in science, finance and engineering. This chapter reviews some of these algorithms, emphasizing the so-called … Read more

Globally Solving Nonconvex Quadratic Programming Problems via Completely Positive Programming

Nonconvex quadratic programming (QP) is an NP-hard problem that optimizes a general quadratic function over linear constraints. This paper introduces a new global optimization algorithm for this problem, which combines two ideas from the literature—finite branching based on the first-order KKT conditions and polyhedral-semidefinite relaxations of completely positive (or copositive) programs. Through a series of … Read more

Preprocessing and Reduction for Degenerate Semidefinite Programs

This paper presents a backward stable preprocessing technique for (nearly) ill-posed semidefinite programming, SDP, problems, i.e.,~programs for which Slater’s constraint qualification, existence of strictly feasible points, (nearly) fails. Current popular algorithms for semidefinite programming rely on \emph{primal-dual interior-point, p-d i-p} methods. These algorithms require Slater’s constraint qualification for both the primal and dual problems. This … Read more

Dippy — a simplified interface for advanced mixed-integer programming

Mathematical modelling languages such as AMPL, GAMS, and Xpress-MP enable mathematical models such as mixed-integer linear programmes (MILPs) to be expressed clearly for solution in solvers such as CPLEX, MINOS and Gurobi. However some models are sufficiently difficult that they cannot be solved using “out-of-the-box” solvers, and customisation of the solver framework to exploit model-specific … Read more

Reliable solution of convex quadratic programs with parametric active set methods

Parametric Active Set Methods (PASM) are a relatively new class of methods to solve convex Quadratic Programming (QP) problems. They are based on tracing the solution along a linear homotopy between a QP with known solution and the QP to be solved. We explicitly identify numerical challenges in PASM and develop strategies to meet these … Read more

A Parallel Inertial Proximal Optimization Method

The Douglas-Rachford algorithm is a popular iterative method for finding a zero of a sum of two maximal monotone operators defined on a Hilbert space. In this paper, we propose an extension of this algorithm including inertia parameters and develop parallel versions to deal with the case of a sum of an arbitrary number of … Read more

A Robust Algorithm for Semidefinite Programming

Current successful methods for solving semidefinite programs, SDP, are based on primal-dual interior-point approaches. These usually involve a symmetrization step to allow for application of Newton’s method followed by block elimination to reduce the size of the Newton equation. Both these steps create ill-conditioning in the Newton equation and singularity of the Jacobian of the … Read more

A biased random-key genetic algorithm for the Steiner triple covering problem

We present a biased random-key genetic algorithm (BRKGA) for finding small covers of computationally difficult set covering problems that arise in computing the 1-width of incidence matrices of Steiner triple systems. Using a parallel implementation of the BRKGA, we compute improved covers for the two largest instances in a standard set of test problems used … Read more