NLPQLP: A New Fortran Implementation of a Sequential Quadratic Programming Algorithm

The Fortran subroutine NLPQLP solves smooth nonlinear programming problems and is an extension of the code NLPQL. The new version is specifically tuned to run under distributed systems. A new input parameter l is introduced for the number of parallel machines, that is the number of function calls to be executed simultaneously. In case of … Read more

Pivot, Cut, and Dive: A Heuristic for 0-1 Mixed Integer Programming

We present a heuristic method for general 0-1 mixed integer programming, intended for eventual incorporation into parallel branch-and-bound methods for solving such problems exactly. The core of the heuristic is a rounding method based on simplex pivots, employing only gradient information, for a strictly concave, differentiable merit function measuring integer feasibility. When local minima of … Read more

Solving large MINLPs on computational grids

We consider the solution of Mixed Integer Nonlinear Programming (MINLP) problems by a parallel implementation of nonlinear branch-and-bound on a computational grid or meta-computer. Computational experience on a set of large MINLPs is reported which indicates that this approach is efficient for the solution of large MINLPs. CitationNumerical Analysis Report NA/200, Department of Mathematics, University … Read more

Decomposition Algorithms for Stochastic Programming on a Computational Grid

We describe algorithms for two-stage stochastic linear programming with recourse and their implementation on a grid computing platform. In particular, we examine serial and asynchronous versions of the L-shaped method and a trust-region method. The parallel platform of choice is the dynamic, heterogeneous, opportunistic platform provided by the Condor system. The algorithms are of master-worker … Read more

Optimization on Computational Grids

We define the concept of a computational grid, and describe recent work in solving large and complex optimization problems on this type of platform; in particular, integer programming, the quadratic assignment problem, and stochastic programming problems. This article focuses on work conducted in the metaneos project. CitationPreprint, Mathematics and Computer Science Division, Argonne National Laboratory. … Read more

GPCG: A case study in the performance and scalability of optimization algorithms

GPCG is an algorithm within the Toolkit for Advanced Optimization (TAO) for solving bound constrained, convex quadratic problems. Originally developed by More’ and Toraldo, this algorithm was designed for large-scale problems but had been implemented only for a single processor. The TAO implementation is available for a wide range of high-performance architecture, and has been … Read more

Solving Large Quadratic Assignment Problems on Computational Grids

The quadratic assignment problem (QAP) is among the hardest combinatorial optimization problems. Some instances of size n >= 30 have remained unsolved for decades. The solution of these problems requires both improvements in mathematical programming algorithms and the utilization of powerful computational platforms. In this article we describe a novel approach to solve QAPs using … Read more

A Parallel, Linear Programming Based Heuristic for Large Scale Set Partitioning Problems

We describe a parallel, linear programming and implication based heuristic for solving set partitioning problems on distributed memory computer architectures. Our implementation is carefully designed to exploit parallelism to greatest advantage in advanced techniques like preprocessing and probing, primal heuristics, and cut generation. A primal-dual subproblem simplex method is used for solving the linear programming … Read more