Conjecturing-Based Discovery of Patterns in Data

We propose the use of a conjecturing machine that suggests feature relationships in the form of bounds involving nonlinear terms for numerical features and boolean expressions for categorical features. The proposed Conjecturing framework recovers known nonlinear and boolean relationships among features from data. In both settings, true underlying relationships are revealed. We then compare the … Read more

Learning the Follower’s Objective Function in Sequential Bilevel Games

We consider bilevel optimization problems in which the leader has no or only partial knowledge about the objective function of the follower. The studied setting is a sequential one in which the bilevel game is played repeatedly. This allows the leader to learn the objective function (values) of the follower over time. We focus on … Read more

Data-Driven Counterfactual Optimization For Personalized Clinical Decision-Making

Chronic diseases have a significant impact on global mortality rates and healthcare costs. Notably, machine learning-based clinical assessment tools are becoming increasingly popular for informing treatment targets for high-risk patients with chronic diseases. However, using these tools alone, it is challenging to identify personalized treatment targets that lower the risks of adverse outcomes to a … Read more

Almost-sure convergence of iterates and multipliers in stochastic sequential quadratic optimization

Stochastic sequential quadratic optimization (SQP) methods for solving continuous optimization problems with nonlinear equality constraints have attracted attention recently, such as for solving large-scale data-fitting problems subject to nonconvex constraints. However, for a recently proposed subclass of such methods that is built on the popular stochastic-gradient methodology from the unconstrained setting, convergence guarantees have been … Read more

Solution Path of Time-varying Markov Random Fields with Discrete Regularization

We study the problem of inferring sparse time-varying Markov random fields (MRFs) with different discrete and temporal regularizations on the parameters. Due to the intractability of discrete regularization, most approaches for solving this problem rely on the so-called maximum-likelihood estimation (MLE) with relaxed regularization, which neither results in ideal statistical properties nor scale to the … Read more

Inexact Direct-Search Methods for Bilevel Optimization Problems

In this work, we introduce new direct search schemes for the solution of bilevel optimization (BO) problems. Our methods rely on a fixed accuracy black box oracle for the lower-level problem, and deal both with smooth and potentially nonsmooth true objectives. We thus analyze for the first time in the literature direct search schemes in … Read more

Structured Pruning of Neural Networks for Constraints Learning

In recent years, the integration of Machine Learning (ML) models with Operation Research (OR) tools has gained popularity across diverse applications, including cancer treatment, algorithmic configuration, and chemical process optimization. In this domain, the combination of ML and OR often relies on representing the ML model output using Mixed Integer Programming (MIP) formulations. Numerous studies … Read more

Sharpness and well-conditioning of nonsmooth convex formulations in statistical signal recovery

We study a sample complexity vs. conditioning tradeoff in modern signal recovery problems where convex optimization problems are built from sampled observations. We begin by introducing a set of condition numbers related to sharpness in \(\ell_p\) or Schatten-p norms (\(p\in[1,2]\)) based on nonsmooth reformulations of a class of convex optimization problems, including sparse recovery, low-rank … Read more

Shattering Inequalities for Learning Optimal Decision Trees

Recently, mixed-integer programming (MIP) techniques have been applied to learn optimal decision trees. Empirical research has shown that optimal trees typically have better out-of-sample performance than heuristic approaches such as CART. However, the underlying MIP formulations often suffer from weak linear programming (LP) relaxations. Many existing MIP approaches employ big-M constraints to ensure observations are … Read more

Optimal Cross-Validation for Sparse Linear Regression

Given a high-dimensional covariate matrix and a response vector, ridge-regularized sparse linear regression selects a subset of features that explains the relationship between covariates and the response in an interpretable manner. To select the sparsity and robustness of linear regressors, techniques like k-fold cross-validation are commonly used for hyperparameter tuning. However, cross-validation substantially increases the … Read more