STOCHASTIC OPTIMIZATION OVER A PARETO SET ASSOCIATED WITH A STOCHASTIC MULTI-OBJECTIVE OPTIMIZATION PROBLEM

We deal with the problem of minimizing the expectation of a real valued random function over the weakly Pareto or Pareto set associated with a Stochastic Multi-Objective Optimization Problem (SMOP) whose objectives are expectations of random functions. Assuming that the closed form of these expectations is difficult to obtain, we apply the Sample Average Approximation … Read more

A branch-and-bound algorithm for biobjective mixed-integer programs

We propose a branch-and-bound (BB) algorithm for biobjective mixed-integer linear programs (BOMILPs). Our approach makes no assumption on the type of problem and we prove that it returns all Pareto points of a BOMILP. We discuss two techniques upon which the BB is based: fathoming rules to eliminate those subproblems that are guaranteed not to … Read more

A Generalization of a Theorem of Arrow, Barankin and Blackwell to a Nonconvex Case

The paper presents a generalization of a known density theorem of Arrow, Barankin, and Blackwell for properly efficient points defined as support points of sets with respect to monotonically increasing sublinear functions. This result is shown to hold for nonconvex sets of a reflexive Banach space partially ordered by a Bishop–Phelps cone. Citation Department of … Read more

Some criteria for error bounds in set optimization

We obtain sufficient and/or necessary conditions for global/local error bounds for the distances to some sets appeared in set optimization studied with both the set approach and vector approach (sublevel sets, constraint sets, sets of {\it all } Pareto efficient/ Henig proper efficient/super efficient solutions, sets of solutions {\it corresponding to one} Pareto efficient/Henig proper … Read more

POST-PARETO ANALYSIS FOR MULTIOBJECTIVE PARABOLIC CONTROL SYSTEMS

In this paper is presented the problem of optimizing a functional over a Pareto control set associated with a convex multiobjective control problem in Hilbert spaces, namely parabolic system. This approach generalizes for this setting some results obtained in finite dimensions. Some examples are presented. General optimality results are obtained, and a special attention is … Read more

Optimization with multivariate conditional value-at-risk constraints

For many decision making problems under uncertainty, it is crucial to develop risk-averse models and specify the decision makers’ risk preferences based on multiple stochastic performance measures (or criteria). Incorporating such multivariate preference rules into optimization models is a fairly recent research area. Existing studies focus on extending univariate stochastic dominance rules to the multivariate … Read more

Simultaneous approximation of multi-criteria submodular function maximization

Recently there has been intensive interest on approximation of the NP-hard submodular maximization problem due to their theoretical and practical significance. In this work, we extend this line of research by focusing on the simultaneous approximation of multiple submodular function maximization. We address existence and nonexistence results for both deterministic and randomized approximation when the … Read more

Efficient Cardinality/Mean-Variance Portfolios

A number of variants of the classical Markowitz mean-variance optimization model for portfolio selection have been investigated to render it more realistic. Recently, it has been studied the imposition of a cardinality constraint, setting an upper bound on the number of active positions taken in the portfolio, in an attempt to improve its performance and … Read more

A Fast Algorithm for Constructing Efficient Event-Related fMRI Designs

We propose a novel, ecient approach for obtaining high-quality experimental designs for event-related functional magnetic resonance imaging (ER-fMRI). Our approach combines a greedy hillclimbing algorithm and a cyclic permutation method. When searching for optimal ER-fMRI designs, the proposed approach focuses only on a promising restricted class of designs with equal frequency of occurrence across stimulus … Read more

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

This paper proposes a new probabilistic algorithm for solving multi-objective optimization problems – Probability-Driven Search Algorithm. The algorithm uses probabilities to control the process in search of Pareto optimal solutions. Especially, we use the absorbing Markov Chain to argue the convergence of the algorithm. We test this approach by implementing the algorithm on some benchmark … Read more