Integer Programming, Constraint Programming, and Hybrid Decomposition Approaches to Discretizable Distance Geometry Problems

Given an integer dimension K and a simple, undirected graph G with positive edge weights, the Distance Geometry Problem (DGP) aims to find a realization function mapping each vertex to a coordinate in K-dimensional space such that the distance between pairs of vertex coordinates is equal to the corresponding edge weights in G. The so-called … Read more

RaBVIt-SG, an algorithm for solving Feedback Nash equilibria in Multiplayers Stochastic Differential Games

In a previous work, we have introduced an algorithm, called RaBVItG, used for computing Feedback Nash equilibria of deterministic multiplayers Differential Games. This algorithm is based on a sequence of Game Iterations (i.e., a numerical method to simulate an equilibrium of a Differential Game), combined with Value Iterations (i.e, a numerical method to solve a … Read more

Multi-Module Capacitated Lot-Sizing Problem, and its Generalizations with Two-Echelons and Piecewise Concave Production Costs

We study new generalizations of the classical capacitated lot-sizing problem with concave production (or transportation), holding, and subcontracting cost functions in which the total production (or transportation) capacity in each time period is the summation of capacities of a subset of n available modules (machines or vehicles) of different capacities. We refer to this problem … Read more

The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine learning

Optimization of conflicting functions is of paramount importance in decision making, and real world applications frequently involve data that is uncertain or unknown, resulting in multi-objective optimization (MOO) problems of stochastic type. We study the stochastic multi-gradient (SMG) method, seen as an extension of the classical stochastic gradient method for single-objective optimization. At each iteration … Read more

Optimal Control of Differential Inclusions

This paper is devoted to optimal control of dynamical systems governed by differential inclusions in both frameworks of Lipschitz continuous and discontinuous velocity mappings. The latter framework mostly concerns a new class of optimal control problems described by various versions of the so-called sweeping/Moreau processes that are very challenging mathematically and highly important in applications … Read more

Accelerated Symmetric ADMM and Its Applications in Signal Processing

The alternating direction method of multipliers (ADMM) were extensively investigated in the past decades for solving separable convex optimization problems. Fewer researchers focused on exploring its convergence properties for the nonconvex case although it performed surprisingly efficient. In this paper, we propose a symmetric ADMM based on different acceleration techniques for a family of potentially … Read more

Quantifying the value of flexibility: demand response versus storage

Intermittent sources of energy represent a challenge for electrical networks, particularly regarding demand satisfaction at peak times. Energy management tools such as load shaving or storage systems can be used to mitigate abrupt variations in the network.The value of different mechanisms to move energy through time is determined by a multi-objective programming approach, that aims … Read more

Line-Prioritized Environmental Selection and Normalization Scheme for Many-Objective Optimization using Reference-Line-based Framework

The Pareto-dominance-basedmulti-objective evolutionary algorithms (MOEAs) have been successful in solving many test problems and other engineering optimization problems. However, their performance gets affected when solving more than 3-objective optimization problems due to lack of sufficient selection pressure. Many attempts have been made by the researchers toward improving the environmental selection of those MOEAs. One such … Read more

Distributionally Robust Partially Observable Markov Decision Process with Moment-based Ambiguity

We consider a distributionally robust Partially Observable Markov Decision Process (DR-POMDP), where the distribution of the transition-observation probabilities is unknown at the beginning of each decision period, but their realizations can be inferred using side information at the end of each period after an action being taken. We build an ambiguity set of the joint … Read more

Assessment of Climate Agreements over the Long Term with Strategic Carbon Dioxyde Removal Activity

In this paper we extend a game theoretic meta-model used to assess the future of Paris agreement to the time horizon 2100 and we include in the strategic decisions of the negotiating coalitions the use of Carbon Dioxyde Removal (CDR) technologies. The meta-game model is calibrated through statistical emulation of GEMINI-E3, a world computable general … Read more