A Copositive Approach for Two-Stage Adjustable Robust Optimization with Uncertain Right-Hand Sides

We study two-stage adjustable robust linear programming in which the right-hand sides are uncertain and belong to a convex, compact uncertainty set. This problem is NP-hard, and the affine policy is a popular, tractable approximation. We prove that under standard and simple conditions, the two-stage problem can be reformulated as a copositive optimization problem, which … Read more

Optimal Deterministic Algorithm Generation

A formulation for the automated generation of algorithms via mathematical programming (optimization) is proposed. The formulation is based on the concept of optimizing within a parameterized family of algorithms, or equivalently a family of functions describing the algorithmic steps. The optimization variables are the parameters – within this family of algorithms- that encode algorithm design: … Read more

An Effective Dynamic Programming Algorithm for the Minimum-Cost Maximal Knapsack Packing

Given a set of n items with profits and weights and a knapsack capacity C, we study the problem of finding a maximal knapsack packing that minimizes the profit of selected items. We propose for the first time an effective dynamic programming (DP) algorithm which has O(nC) time complexity and O(n+C) space complexity. We demonstrate … Read more

Optimization with stochastic preferences based on a general class of scalarization functions

It is of crucial importance to develop risk-averse models for multicriteria decision making under uncertainty. A major stream of the related literature studies optimization problems that feature multivariate stochastic benchmarking constraints. These problems typically involve a univariate stochastic preference relation, often based on stochastic dominance or a coherent risk measure such as conditional value-at-risk (CVaR), … Read more

Mixed-Integer Programming for Cycle Detection in Non-reversible Markov Processes

In this paper, we present a new, optimization-based method to exhibit cyclic behavior in non-reversible stochastic processes. While our method is general, it is strongly motivated by discrete simulations of ordinary differential equations representing non-reversible biological processes, in particular molecular simulations. Here, the discrete time steps of the simulation are often very small compared to … Read more

Decomposition of loosely coupled integer programs: A multiobjective perspective

We consider integer programming (IP) problems consisting of (possibly a large number of) subsystems and a small number of coupling constraints that link variables from different subsystems. Such problems are called loosely coupled or nearly decomposable. Motivated by recent developments in multiobjective programming (MOP), we develop a MOP-based decomposition algorithm to solve loosely coupled IPs. … Read more

Exact algorithms for bi-objective ring tree problems with reliability measures

We introduce bi-objective models for ring tree network design with a focus on network reliability within telecommunication applications. Our approaches generalize the capacitated ring tree problem (CRTP) which asks for a partially reliable topology that connects customers with different security requirements to a depot node by combined ring and tree graphs. While the CRTP aims … Read more

On a Practical Notion of Geoffrion Proper Optimality in Multicriteria Optimization

Geoffrion proper optimality is a widely used optimality notion in multicriteria optimization that prevents exact solutions having unbounded trade-offs. As algorithms for multicriteria optimization usually give only approximate solutions, we analyze the notion of approximate Geoffrion proper optimality. We show that in the limit, approximate Geoffrion proper optimality may converge to solutions having unbounded trade-offs. … Read more

On the Existence of Ideal Solutions in Multi-objective 0-1 Integer Programs

We study conditions under which the objective functions of a multi-objective 0-1 integer linear program guarantee the existence of an ideal point, meaning the existence of a feasible solution that simultaneously minimizes all objectives. In addition, we study the complexity of recognizing whether a set of objective functions satisfies these conditions: we show that it … Read more

Moulin Mechanism Design for Freight Consolidation

In freight consolidation, a “fair” cost allocation scheme is critical for forming and sustaining horizontal cooperation that leads to reduced transportation cost. We study a cost-sharing problem in a freight consolidation system with one consolidation center and a common destination. In particular, we design a mechanism that collects bids from a set of suppliers, and … Read more