Integer Programming Approaches for Distributionally Robust Chance Constraints with Adjustable Risks

We study distributionally robust chance-constrained programs (DRCCPs) with individual chance constraints under a Wasserstein ambiguity. The DRCCPs treat the risk tolerances associated with the distributionally robust chance constraints (DRCCs) as decision variables to trade off between the system cost and risk of violations by penalizing the risk tolerances in the objective function. The introduction of … Read more

Distributionally and Adversarially Robust Logistic Regression via Intersecting Wasserstein Balls

Adversarially robust optimization (ARO) has emerged as the *de facto* standard for training models that hedge against adversarial attacks in the test stage. While these models are robust against adversarial attacks, they tend to suffer severely from overfitting. To address this issue, some successful methods replace the empirical distribution in the training stage with alternatives … Read more

Wasserstein Distributionally Robust Optimization with Heterogeneous Data Sources

We study decision problems under uncertainty, where the decision-maker has access to K data sources that carry biased information about the underlying risk factors. The biases are measured by the mismatch between the risk factor distribution and the K data-generating distributions with respect to an optimal transport (OT) distance. In this situation the decision-maker can … Read more

Toll Setting with Robust Wardrop Equilibrium Conditions Under Budgeted Uncertainty

We consider two variants of the toll-setting problem in which a traffic authority uses tolls either to maximize revenue or to alleviate bottlenecks in the traffic network. The users of the network are assumed to act according to Wardrop’s user equilibrium so that the overall toll-setting problems are modeled as mathematical problems with equilibrium constraints. … Read more

k-Submodular Interdiction Problems under Distributional Risk-Receptiveness and Robustness: Application to Machine Learning

We study submodular optimization in adversarial context, applicable to machine learning problems such as feature selection using data susceptible to uncertainties and attacks. We focus on Stackelberg games between an attacker (or interdictor) and a defender where the attacker aims to minimize the defender’s objective of maximizing a $k$-submodular function. We allow uncertainties arising from … Read more

Robustness Analysis for Adaptive Optimization With Application to Industrial Decarbonization in the Netherlands

Robustness analysis assesses the performance of a particular solution under variation in the input data. This is distinct from sensitivity analysis, which assesses how variation in the input data changes a model’s optimal solution. For risk assessment purposes, robustness analysis has more practical value than sensitivity analysis. This is because sensitivity analysis, when applied to … Read more

A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set

The state-of-the-art methods for estimating high-dimensional covariance matrices all shrink the eigenvalues of the sample covariance matrix towards a data-insensitive shrinkage target. The underlying shrinkage transformation is either chosen heuristically – without compelling theoretical justification – or optimally in view of restrictive distributional assumptions. In this paper, we propose a principled approach to construct covariance … Read more

A Clustering-based uncertainty set for Robust Optimization

Robust optimization is an approach for handling uncertainty in optimization problems, in which the uncertainty set determines the conservativeness of the solutions. In this paper, we propose a data-driven uncertainty set using a type of volume-based clustering, which we call Minimum-Volume Norm-Based Clustering (MVNBC). MVNBC extends the concept of minimum-volume ellipsoid clustering by allowing clusters … Read more

Heuristic Methods for Γ-Robust Mixed-Integer Linear Bilevel Problems

Due to their nested structure, bilevel problems are intrinsically hard to solve–even if all variables are continuous and all parameters of the problem are exactly known. In this paper, we study mixed-integer linear bilevel problems with lower-level objective uncertainty, which we address using the notion of Γ-robustness. To tackle the Γ-robust counterpart of the bilevel … Read more

A Max-Min-Max Algorithm for Large-Scale Robust Optimization

Robust optimization (RO) is a powerful paradigm for decision making under uncertainty. Existing algorithms for solving RO, including the reformulation approach and the cutting-plane method, do not scale well, hindering the application of RO to large-scale decision problems. In this paper, we devise a first-order algorithm for solving RO based on a novel max-min-max perspective. … Read more