Model-Free Assortment Pricing with Transaction Data

We study a problem in which a firm sets prices for products based on the transaction data, i.e., which product past customers chose from an assortment and what were the historical prices that they observed. Our approach does not impose a model on the distribution of the customers’ valuations and only assumes, instead, that purchase … Read more

The structure of conservative gradient fields

The classical Clarke subdifferential alone is inadequate for understanding automatic differentiation in nonsmooth contexts. Instead, we can sometimes rely on enlarged generalized gradients called “conservative fields”, defined through the natural path-wise chain rule: one application is the convergence analysis of gradient-based deep learning algorithms. In the semi-algebraic case, we show that all conservative fields are … Read more

Distributionally robust second-order stochastic dominance constrained optimization with Wasserstein distance

We consider a distributionally robust second-order stochastic dominance constrained optimization problem. We require the dominance constraints hold with respect to all probability distributions in a Wasserstein ball centered at the empirical distribution. We adopt the sample approximation approach to develop a linear programming formulation that provides a lower bound. We propose a novel split-and-dual decomposition … Read more

An (s^r)hBcResolution ODE Framework for Understanding Discrete-Time Algorithms and Applications to the Linear Convergence of Minimax Problems

There has been a long history of using ordinary differential equations (ODEs) to understand the dynamic of discrete-time algorithms (DTAs). Surprisingly, there are still two fundamental and unanswered questions: (i) it is unclear how to obtain a \emph{suitable} ODE from a given DTA, and (ii) it is unclear the connection between the convergence of a … Read more

Efficient presolving methods for the influence maximization problem in social networks

We consider the influence maximization problem (IMP) which asks for identifying a limited number of key individuals to spread influence in a social network such that the expected number of influenced individuals is maximized. The stochastic maximal covering location problem (SMCLP) formulation is a mixed integer programming formulation that effectively approximates the IMP by the … Read more

Optimization with learning-informed differential equation constraints and its applications

Inspired by applications in optimal control of semilinear elliptic partial differential equations and physics-integrated imaging, differential equation constrained optimization problems with constituents that are only accessible through data-driven techniques are studied. A particular focus is on the analysis and on numerical methods for problems with machine-learned components. For a rather general context, an error analysis … Read more

A Survey on Mixed-Integer Programming Techniques in Bilevel Optimization

Bilevel optimization is a field of mathematical programming in which some variables are constrained to be the solution of another optimization problem. As a consequence, bilevel optimization is able to model hierarchical decision processes. This is appealing for modeling real-world problems, but it also makes the resulting optimization models hard to solve in theory and … Read more

Constrained and Composite Optimization via Adaptive Sampling Methods

The motivation for this paper stems from the desire to develop an adaptive sampling method for solving constrained optimization problems in which the objective function is stochastic and the constraints are deterministic. The method proposed in this paper is a proximal gradient method that can also be applied to the composite optimization problem min f(x) … Read more

Conic Mixed-Binary Sets: Convex Hull Characterizations and Applications

We consider a general conic mixed-binary set where each homogeneous conic constraint involves an affine function of independent continuous variables and an epigraph variable associated with a nonnegative function, $f_j$, of common binary variables. Sets of this form naturally arise as substructures in a number of applications including mean-risk optimization, chance-constrained problems, portfolio optimization, lot-sizing … Read more

Weak notions of nondegeneracy in nonlinear semidefinite programming

The constraint nondegeneracy condition is one of the most relevant and useful constraint qualifications in nonlinear semidefinite programming. It can be characterized in terms of any fixed orthonormal basis of the, let us say, $\ell$-dimensional kernel of the constraint matrix, by the linear independence of a set of $\ell(\ell+1)/2$ derivative vectors. We show that this … Read more