Adaptive Two-stage Stochastic Programming with an Application to Capacity Expansion Planning

Multi-stage stochastic programming is a well-established framework for sequential decision making under uncertainty by seeking policies that are fully adapted to the uncertainty. Often, e.g. due to contractual constraints, such flexible and adaptive policies are not desirable, and the decision maker may need to commit to a set of actions for a certain number of … Read more

Anomalous Behaviour of Dual-Based Heuristics

Some popular heuristics for combinatorial optimisation start by constructing a feasible solution to a dual of the problem. We show that such dual-based heuristics can exhibit highly counter-intuitive behaviour. In particular, for some problem classes, solving the dual exactly invariably leads to much worse primal solutions than solving the dual with a simple greedy heuristic. … Read more

Tactical Design of Same-Day Delivery Systems

We study tactical models for the design of same-day delivery (SDD) systems. Same-day fulfillment in e-commerce has seen substantial growth in recent years, and the underlying management of such services is complex. While the literature includes operational models to study SDD, they tend to be detailed, complex, and computationally difficult to solve, and thus may … Read more

Confidence Regions in Wasserstein Distributionally Robust Estimation

Wasserstein distributionally robust optimization (DRO) estimators are obtained as solutions of min-max problems in which the statistician selects a parameter minimizing the worst-case loss among all probability models within a certain distance (in a Wasserstein sense) from the underlying empirical measure. While motivated by the need to identify model parameters (or) decision choices that are … Read more

Assessment of Climate Agreements over the Long Term with Strategic Carbon Dioxyde Removal Activity

In this paper we extend a game theoretic meta-model used to assess the future of Paris agreement to the time horizon 2100 and we include in the strategic decisions of the negotiating coalitions the use of Carbon Dioxyde Removal (CDR) technologies. The meta-game model is calibrated through statistical emulation of GEMINI-E3, a world computable general … Read more

Sharing the Value-at-Risk under Distributional Ambiguity

This paper considers the problem of risk sharing, where a coalition of homogeneous agents, each bearing a random cost, aggregates their costs and shares the value-at-risk of such a risky position. Due to limited distributional information in practice, the joint distribution of agents’ random costs is difficult to acquire. The coalition, being aware of the … Read more

Decorous Combinatorial Lower Bounds for Row Layout Problems

In this paper we consider the Double-Row Facility Layout Problem (DRFLP). Given a set of departments and pairwise transport weights between them the DRFLP asks for a non-overlapping arrangement of the departments along both sides of a common path such that the weighted sum of the center-to-center distances between the departments is minimized. Despite its … Read more

A Generic Exact Solver for Vehicle Routing and Related Problems

Major advances were recently obtained in the exact solution of Vehicle Routing Problems (VRPs). Sophisticated Branch-Cut-and-Price (BCP) algorithms for some of the most classical VRP variants now solve many instances with up to a few hundreds of customers. However, adapting and reimplementing those successful algorithms for other variants can be a very demanding task. This … Read more

Minimizing Total Earliness and Tardiness with Periodically Supplied Non-renewable Resource Profiles

We consider a special class of resource-constrained single machine scheduling problems. In the classical scheduling context, resource types are classi ed into renewable and non-renewable; however, a large variety of real-world problems may not fit into one of these classes, e.g., labor regulations in project scheduling, budget allocation to different phases of a construction project, and … Read more

Theorems of the Alternative for Conic Integer Programming

Farkas’ Lemma is a foundational result in linear programming, with implications in duality, optimality conditions, and stochastic and bilevel programming. Its generalizations are known as theorems of the alternative. There exist theorems of the alternative for integer programming and conic programming. We present theorems of the alternative for conic integer programming. We provide a nested … Read more