Pareto Leap: An Algorithm for Biobjective Mixed-Integer Programming

Many real-life optimization problems need to make decisions with discrete variables and multiple, conflicting objectives. Due to this need, the ability to solve such problems is an important and active area of research. We present a new algorithm, called Pareto Leap, for identifying the (weak) Pareto slices of biobjective mixed-integer programs (BOMIPs), even when Pareto … Read more

Globally Converging Algorithm for Multistage Stochastic Mixed-Integer Programs via Enhanced Lagrangian Cuts

This paper proposes a globally converging cutting-plane algorithm for solving multistage stochastic mixed-integer programs with general mixed-integer state variables. We demonstrate the generation process of Lagrangian cuts and show that Lagrangian cuts capture the convex envelope of value functions on a restricted region. To approximate nonconvex value functions to exactness, we propose to iteratively add … Read more

Superiorization and Perturbation Resilience of Algorithms: A Continuously Updated Bibliography

This document presents a (mostly) chronologically-ordered bibliography of scientific publications on the superiorization methodology and perturbation resilience of algorithms which is compiled and continuously updated by us at: http://math.haifa.ac.il/yair/bib-superiorization-censor.html. Since the beginnings of this topic we try to trace the work that has been published about it since its inception. To the best of our … Read more

A characterization of positive spanning sets with ties to strongly edge-connected digraphs

Positive spanning sets (PSSs) are families of vectors that span a given linear space through non-negative linear combinations. Despite certain classes of PSSs being well understood, a complete characterization of PSSs remains elusive. In this paper, we explore a relatively understudied relationship between positive spanning sets and strongly edge-connected digraphs, in that the former can … Read more

A 2-index Stage-based Formulation and a Construct-Merge-Solve & Adapt Algorithm for the Flying Sidekick Traveling Salesman Problem

In this work, we present the first 2-index stage-based formulation for the Flying Sidekick Traveling Salesman Problem (FSTSP). Additionally, we propose a Construct-Merge-Solve & Adapt (CMSA) algorithm designed to generate high-quality feasible solutions. Experimental results demonstrate that the proposed algorithm consistently produces good solutions in a fraction of the time required by state-of-the-art mixed-integer linear … Read more

Recursive Partitioning and Batching for Network Design with Service Time Guarantees at Massive Scale

Motivated by the parcel delivery industry, we study a network design problem with service time guarantees at industrial scale. This tactical service network design problem determines primary paths and delivery schedules for commodities to minimize transportation and handling costs while ensuring committed service times. To construct a solution for a real-world instance with over 1,000 … Read more

Tight Semidefinite Relaxations for Verifying Robustness of Neural Networks

For verifying the safety of neural networks (NNs), Fazlyab et al. (2019) introduced a semidefinite programming (SDP) approach called DeepSDP. This formulation can be viewed as the dual of the SDP relaxation for a problem formulated as a quadratically constrained quadratic program (QCQP). While SDP relaxations of QCQPs generally provide approximate solutions with some gaps, … Read more

A relaxed version of Ryu’s three-operator splitting method for structured nonconvex optimization

In this work, we propose a modification of Ryu’s splitting algorithm for minimizing the sum of three functions, where two of them are convex with Lipschitz continuous gradients, and the third is an arbitrary proper closed function that is not necessarily convex. The modification is essential to facilitate the convergence analysis, particularly in establishing a … Read more

Rounding the Lovasz Theta Function with a Value Function Approximation

The Lovasz theta function is a semidefinite programming (SDP) relaxation for the maximum weighted stable set problem, which is tight for perfect graphs. However, even for perfect graphs, there is no known rounding method guaranteed to extract an optimal stable set from the SDP solution. In this paper, we develop a novel rounding scheme for … Read more

An iterative process for the feasibility-seeking problem with sets that are unions of convex sets

In this paper we deal with the feasibility-seeking problem for unions of convex sets (UCS) sets and propose an iterative process for its solution. Renewed interest in this problem stems from the fact that it was recently discovered to serve as a modeling approach in fields of applications and from the ongoing recent research efforts … Read more