A new dual for quadratic programming and its applications

The main outcomes of the paper are divided into two parts. First, we present a new dual for quadratic programs, in which, the dual variables are affine functions, and we prove strong duality. Since the new dual is intractable, we consider a modified version by restricting the feasible set. This leads to a new bound … Read more

The Distributionally Robust Chance Constrained Vehicle Routing Problem

We study a variant of the capacitated vehicle routing problem (CVRP), which asks for the cost-optimal delivery of a single product to geographically dispersed customers through a fleet of capacity-constrained vehicles. Contrary to the classical CVRP, which assumes that the customer demands are deterministic, we model the demands as a random vector whose distribution is … Read more

Markov inequalities, Dubiner distance, norming meshes and polynomial optimization on convex bodies

We construct norming meshes for polynomial optimization by the classical Markov inequality on general convex bodies in R^d, and by a tangential Markov inequality via an estimate of Dubiner distance on smooth convex bodies. These allow to compute a (1−eps)-approximation to the minimum of any polynomial of degree not exceeding n by O((n/sqrt(eps))^(ad)) samples, with … Read more

The Value of Multi-stage Stochastic Programming in Risk-averse Unit Commitment under Uncertainty

Day-ahead scheduling of electricity generation or unit commitment is an important and challenging optimization problem in power systems. Variability in net load arising from the increasing penetration of renewable technologies have motivated study of various classes of stochastic unit commitment models. In two-stage models, the generation schedule for the entire day is fixed while the … Read more

Inexact Variable Metric Stochastic Block-Coordinate Descent for Regularized Optimization

Block-coordinate descent (BCD) is a popular framework for large-scale regularized optimization problems with block-separable structure. Existing methods have several limitations. They often assume that subproblems can be solved exactly at each iteration, which in practical terms usually restricts the quadratic term in the subproblem to be diagonal, thus losing most of the benefits of higher-order … Read more

Split cuts from sparse disjunctions

Split cuts are arguably the most effective class of cutting planes within a branch-and-cut framework for solving general Mixed-Integer Programs (MIP). Sparsity, on the other hand, is a common characteristic of MIP problems, and it is an important part of why the simplex method works so well inside branch-and-cut. In this work, we evaluate the … Read more

Polynomial Optimization on Chebyshev-Dubiner Webs of Starlike Polygons

We construct web-shaped norming meshes on starlike polygons, by radial and boundary Chebyshev points. Via the approximation theoretic notion of Dubiner distance, we get a (1-eps)-approximation to the minimum of an arbitrary polynomial of degree n by O(n^2/eps) sampling points. Citation Preprint, July 2018 Article Download View Polynomial Optimization on Chebyshev-Dubiner Webs of Starlike Polygons

Multi-objective Ranking and Selection: Optimal Sampling Laws and Tractable Approximations via SCORE

Consider the multi-objective ranking and selection (MORS) problem in which we select the Pareto-optimal set from a finite set of systems evaluated on three or more stochastic objectives. Solving this problem is difficult because we must determine how to allocate a simulation budget among the systems to minimize the probability that any systems are misclassified. … Read more

Cutting Planes by Projecting Interior Points onto Polytope Facets

Given a point x inside a polytope P and a direction d, the projection of x along d asks to find the maximum step length t such that x+td is feasible; we say x+td is a pierce point because it belongs to the boundary of P. We address this projection sub-problem with arbitrary interior points … Read more