Distributionally Robust Optimization with Decision-Dependent Polyhedral Ambiguity

We consider a two-stage stochastic program with continuous recourse, where the distribution of the random parameters depends on the decisions. Assuming a finite sample space, we study a distributionally robust approach to this problem, where the decision-dependent distributional ambiguity is modeled with a polyhedral ambiguity set. We consider cases where the recourse function and the … Read more

Computational Methods for the Household Assignment Problem

We consider the problem of assigning the entries of a household data set to real-world address data. This household assignment problem occurs in the geo-referencing step of spatial microsimulation models. The resulting combinatorial optimization model is a maximum weight matching problem with additional side constraints. Even for real-world instances of medium size, such as the … Read more

Granularity for mixed-integer polynomial optimization problems

Finding good feasible points is crucial in mixed-integer programming. For this purpose we combine a sufficient condition for consistency, called granularity, with the moment-/sos-hierarchy from polynomial optimization. If the mixed-integer problem is granular, we obtain feasible points by solving continuous polynomial problems and rounding their optimal points. The moment-/sos-hierarchy is hereby used to solve those … Read more

BOBILib: Bilevel Optimization (Benchmark) Instance Library

In this report, we present the BOBILib, a collection of more than 2600 instances of mixed integer bilevel linear optimization problems (MIBLPs). The goal of this library is to provide a large and well-curated set of test instances freely available for the research community so that new and existing algorithms in bilevel optimization can be … Read more

Exact Augmented Lagrangian Duality for Nonconvex Mixed-Integer Nonlinear Optimization

In the context of mixed-integer nonlinear problems (MINLPs), it is well-known that strong duality does not hold in general if the standard Lagrangian dual is used. Hence, we consider the augmented Lagrangian dual (ALD), which adds a nonlinear penalty function to the classic Lagrangian function. For this setup, we study conditions under which the ALD … Read more

Inverse of the Gomory Corner Relaxation of Integer Programs

We analyze the inverse of the Gomory corner relaxation (GCR) of a pure integer program (IP). We prove the inverse GCR is equivalent to the inverse of a shortest path problem, yielding a polyhedral representation of the GCR inverse-feasible region. We present a linear programming (LP) formulation for solving the inverse GCR under the \(L_{1}\) … Read more

Complexity results and active-set identification of a derivative-free method for bound-constrained problems

In this paper, we analyze a derivative-free line search method designed for bound-constrained problems. Our analysis demonstrates that this method exhibits a worst-case complexity comparable to other derivative-free methods for unconstrained and linearly constrained problems. In particular, when minimizing a function with $n$ variables, we prove that at most ${\cal O(n\epsilon^{-2})}$ iterations are needed to … Read more

Routing a fleet of unmanned aerial vehicles: a trajectory optimisation-based framework

We consider an aerial survey operation in which a fleet of unmanned aerial vehicles (UAVs) is required to visit several locations and then land in one of the available landing sites while optimising some performance criteria, subject to operational constraints and flight dynamics. We aim to minimise the maximum flight time of the UAVs. To … Read more

A Stochastic Objective-Function-Free Adaptive Regularization Method with Optimal Complexity

A fully stochastic second-order adaptive-regularization method for unconstrained nonconvex optimization is presented which never computes the objective-function value, but yet achieves the optimal $\mathcal{O}(\epsilon^{-3/2})$ complexity bound for finding first-order critical points. The method is noise-tolerant and the inexactness conditions required for convergence depend on the history of past steps. Applications to cases where derivative evaluation … Read more