Single-Row Equidistant Facility Layout as a Special Case of Single-Row Facility Layout

In this paper we discuss two particular layout problems, namely the Single-Row Equidistant Facility Layout Problem (SREFLP) and the Single-Row Facility Layout Problem (SRFLP). Our aim is to consolidate the two respective branches in the layout literature. We show that the SREFLP is not only a special case of the Quadratic Assignment Problem but also … Read more

Solving Bin Packing Related Problems Using an Arc Flow Formulation

We present a new method for solving bin packing problems, including two-constraint variants, based on an arc flow formulation with side constraints. Conventional formulations for bin packing problems are usually highly symmetric and provide very weak lower bounds. The arc flow formulation proposed provides a very strong lower bound, and is able to break symmetry … Read more

Solution of monotone complementarity and general convex programming problems using modified potential reduction interior point method

We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition is satis ed. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation … Read more

Hybridizing VNS and path-relinking on a particle swarm framework to minimize total flowtime

This paper presents a new hybridization of VNS and path-relinking on a particle swarm framework for the permutational fowshop scheduling problem with total flowtime criterion. The operators of the proposed particle swarm are based on path-relinking and variable neighborhood search methods. The performance of the new approach was tested on the bechmark suit of Taillard, … Read more

Complexity of Bilevel Coherent Risk Programming

This paper considers a bilevel programming approach to applying coherent risk measures to extended two-stage stochastic programming problems. This formulation technique avoids the time-inconsistency issues plaguing naive models and the incomposability issues which cause time-consistent formulations to have complicated, hard-to-explain objective functions. Unfortunately, the analysis here shows that such bilevel formulations, when using the standard … Read more

On Chubanov’s method for Linear Programming

We discuss the method recently proposed by S. Chubanov for the linear feasibility problem. We present new, concise proofs and interpretations of some of his results. We then show how our proofs can be used to find strongly polynomial time algorithms for special classes of linear feasibility problems. Under certain conditions, these results provide new … Read more

A biased random-key genetic algorithm for a 2D and 3D bin packing problem

We present a novel multi-population biased random-key genetic algorithm (BRKGA) for the 2D and 3D bin packing problem. The approach uses a maximal-space representation to manage the free spaces in the bins. The proposed algorithm uses a decoder based on a novel placement procedure within a multi-population genetic algorithm based on random keys. The BRKGA … Read more

On the hop-constrained survivable network design problem with reliable edges

In this paper, we study the hop-constrained survivable network design problem with reliable edges. Given a graph with non-negative edge weights and node pairs Q, the hop-constrained survivable network design problem consists of constructing a minimum weight set of edges so that the induced subgraph contains at least K edge-disjoint paths containing at most L … Read more

A class of Fejer convergent algorithms, approximate resolvents and the Hybrid Proximal-Extragradient method

A new framework for analyzing Fejer convergent algorithms is presented. Using this framework we define a very general class of Fejer convergent algorithms and establish its convergence properties. We also introduce a new definition of approximations of resolvents which preserve some useful features of the exact resolvent, and use this concept to present an unifying … Read more

Successive Convex Approximations to Cardinality-Constrained Quadratic Programs: A DC Approach

In this paper we consider a cardinality-constrained quadratic program that minimizes a convex quadratic function subject to a cardinality constraint and linear constraints. This class of problems has found many applications, including portfolio selection, subset selection and compressed sensing. We propose a successive convex approximation method for this class of problems in which the cardinality … Read more