Strengthened MIP Formulations for the Liver Region Redesign Models of Akshat et al.

Liver transplantation has been a critical issue in the U.S. healthcare system for decades, and the region redesign aims to ameliorate this issue. This paper revisits two mixed integer programming (MIP) formulations of the liver region redesign problem proposed by Akshat et al. We study their first formulation considering two different modeling approaches: one compact … Read more

Goldstein Stationarity in Lipschitz Constrained Optimization

We prove the first convergence guarantees for a subgradient method minimizing a generic Lipschitz function over generic Lipschitz inequality constraints. No smoothness or convexity (or weak convexity) assumptions are made. Instead, we utilize a sequence of recent advances in Lipschitz unconstrained minimization, which showed convergence rates of $O(1/\delta\epsilon^3)$ towards reaching a “Goldstein” stationary point, that … Read more

Efficient Approximation Quality Computation for Sandwiching Algorithms for Convex Multicriteria Optimization

Computing the approximation quality is a crucial step in every iteration of Sandwiching algorithms (also called Benson-type algorithms) used for the approximation of convex Pareto fronts, sets or functions. Two quality indicators often used in these algorithms are polyhedral gauge and epsilon indicator. In this article, we develop an algorithm to compute the polyhedral gauge … Read more

Analysis of a Class of Minimization Problems Lacking Lower Semicontinuity

The minimization of non-lower semicontinuous functions is a difficult topic that has been minimally studied. Among such functions is a Heaviside composite function that is the composition of a Heaviside function with a possibly nonsmooth multivariate function. Unifying a statistical estimation problem with hierarchical selection of variables and a sample average approximation of composite chance … Read more

On achieving strong necessary second-order properties in nonlinear programming

Second-order necessary or sufficient optimality conditions for nonlinear programming are usually defined by means of the positive (semi-)definiteness of a quadratic form, or a maximum of quadratic forms, over the critical cone. However, algorithms for finding such second-order stationary points are currently unknown. Typically, an algorithm with a second-order property approximates a primal-dual point such … Read more

Full-low evaluation methods for bound and linearly constrained derivative-free optimization

Derivative-free optimization (DFO) consists in finding the best value of an objective function without relying on derivatives. To tackle such problems, one may build approximate derivatives, using for instance finite-difference estimates. One may also design algorithmic strategies that perform space exploration and seek improvement over the current point. The first type of strategy often provides … Read more

Healthcare Operations Research and Management under Pandemics: a Review

This literature review sought to identify the role of Operations Research and Management (OR-and-OM) in the Healthcare Systems (HS) decision/policy making processes that have undergone a remarkable transformation when faced with pandemics, especially during the COVID-19 era. In this study, we investigate OR models and OM techniques that facilitate clinical decision-making with short- and long-term … Read more

Benchmarking Piecewise Linear Reformulations for MINLPs: A Computational Study Based on the Open-Source Framework PWL-T-Rex

Solving mixed-integer nonlinear problems by means of piecewise linear relaxations has emerged as a reasonable alternative to the commonly used spatial branch-and-bound. These relaxations have been modeled by various mixed-integer models in recent decades. The idea is to exploit the availability of mature solvers for mixed-integer problems. In this work, we implement a framework that … Read more

Optimization and Simulation for the Daily Operation of Renewable Energy Communities

Renewable Energy Communities (RECs) are an important building block for the decarbonization of the energy sector. The concept of RECs allows individual consumers to join together in local communities to generate, store, consume and sell renewable energy. A major benefit of this collective approach is a better match between supply and demand profiles, and thus, … Read more

K-Shortest Simple Paths Using Biobjective Path Search

In this paper we introduce a new algorithm for the k-Shortest Simple Paths (k-SSP) problem with an asymptotic running time matching the state of the art from the literature. It is based on a black-box algorithm due to Roddity and Zwick that solves at most 2k instances of the Second Shortest Simple Path (2-SSP) problem … Read more