Convergence Results for Pattern Search Algorithms are Tight

Recently, general definitions of pattern search methods for both unconstrained and linearly constrained optimization were presented. It was shown under mild conditions, that there exists a subsequence of iterates converging to a stationary point. In the unconstrained case, stronger results are derived under additional assumptions. In this paper, we present three small dimensioned examples showing … Read more

A Pattern Search Filter Method for Nonlinear Programming without Derivatives

This paper presents and analyzes a pattern search method for general constrained optimization based on filter methods for step acceptance. Roughly, a filter method accepts a step that either improves the objective function value or the value of some function that measures the constraint violation. The new algorithm does not compute or approximate any derivatives, … Read more

Benchmarking optimization software with performance profiles

We propose performance profiles — probability distribution functions for a performance metric — as a tool for benchmarking and comparing optimization software. We show that performance profiles combine the best features of other tools for performance evaluation. Citation benchmarking, performance, evaluation Article Download View Benchmarking optimization software with performance profiles

Discrete convexity and unimodularity. I.

In this article we introduce a theory of convexity for the lattices of integer points, which we call a theory of discrete convexity. In particular, we obtain generalizations of Edmonds’ polymatroid intersection theorem and the Hoffman-Kruskal theorem as consequences of our constructions. Citation Advances in Mathematics (to appear) Article Download View Discrete convexity and unimodularity. … Read more

Lagrangian relaxation

Lagrangian relaxation is a tool to find upper bounds on a given (arbitrary) maximization problem. Sometimes, the bound is exact and an optimal solution is found. Our aim in this paper is to review this technique, the theory behind it, its numerical aspects, its relation with other techniques such as column generation. Citation in: Computational … Read more

Dynamic Weighted Aggregation for Evolutionary Multiobjective Optimization

Weighted sum based approaches to multiobjective optimization is computationally very efficient. However,they have two main weakness: 1) Only one Pareto solution can be obtained in one run 2) The solutions in the concave part of the Pareto front cannot be obtained. This paper proposes a new theory on multiobjective optimization using weighted aggregation approach. Based … Read more

A Nonlinear Programming Algorithm for Solving Semidefinite Programs via Low-rank Factorization

In this paper, we present a nonlinear programming algorithm for solving semidefinite programs (SDPs) in standard form. The algorithm’s distinguishing feature is a change of variables that replaces the symmetric, positive semidefinite variable X of the SDP with a rectangular variable R according to the factorization X = RR^T. The rank of the factorization, i.e., … Read more

Assessing the Potential of Interior Methods for Nonlinear Optimization

A series of numerical experiments with interior point (LOQO, KNITRO) and active-set SQP codes (SNOPT, filterSQP) are reported and analyzed. The tests were performed with small, medium-size and moderately large problems, and are examined by problem classes. Detailed observations on the performance of the codes, and several suggestions on how to improve them are presented. … Read more

A Bundle Method to Solve Multivalued Variational Inequalities

In this paper we present a bundle method for solving a generalized variational inequality problem. This problem consists in finding a zero of the sum of two multivalued operators defined on a real Hilbert space. The first one is monotone and the second one is the subdifferential of a lower semicontinuous proper convex function. The … Read more

Improving complexity of structured convex optimization problems using self-concordant barriers

The purpose of this paper is to provide improved complexity results for several classes of structured convex optimization problems using to the theory of self-concordant functions developed in [2]. We describe the classical short-step interior-point method and optimize its parameters in order to provide the best possible iteration bound. We also discuss the necessity of … Read more