Characterization of the limit point of the central path in semidefinite programming

In linear programming, the central path is known to converge to the analytic center of the set of optimal solutions. Recently, it has been shown that this is not necessarily true for linear semidefinite programming in the absence of strict complementarity. The present paper deals with the formulation of a convex problem whose solution defines … Read more

Geometry of homogeneous convex cones, duality mapping, and optimal self-concordant barriers

We study homogeneous convex cones. We first characterize the extreme rays of such cones in the context of their primal construction (due to Vinberg) and also in the context of their dual construction (due to Rothaus). Then, using these results, we prove that every homogeneous cone is facially exposed. We provide an alternative proof of … Read more

A General Framework for Convex Relaxation of Polynomial Optimization Problems over Cones

The class of POPs (Polynomial Optimization Problems) over cones covers a wide range of optimization problems such as $0$-$1$ integer linear and quadratic programs, nonconvex quadratic programs and bilinear matrix inequalities. This paper presents a new framework for convex relaxation of POPs over cones in terms of linear optimization problems over cones. It provides a … Read more

NEOS Server 4.0 Administrative Guide

The NEOS Server 4.0 provides a general Internet-based client/server as a link between users and software applications. The administrative guide covers the fundamental principles behind the operation of the NEOS Server, installation and trouble-shooting of the Server software, and implementation details of potential interest to a NEOS Server administrator. The guide also discusses making new … Read more

Linear Huber M-Estimator under Ellipsoidal Data Uncertainty

The purpose of this note is to present a robust counterpart of the Huber estimation problem in the sense of Ben-Tal and Nemirovski when the data elements are subject to ellipsoidal uncertainty. The robust counterparts are polynomially solvable second-order cone programs with the strong duality property. We illustrate the effectiveness of the robust counterpart approach … Read more

Search and Cut: New Class of Cutting Planes for 0-1 Programming

The basic principle of the cutting plane techniques is to chop away the portions of the solution space of the linear programming relaxation of an integer program that contain no integer solutions. this is true for both Gomory’s cutting planes, and other more recent cuts based on valid inequalities. Obtaining a partial or full description … Read more

SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB — User’s Guide

SOSTOOLS is a free MATLAB toolbox for formulating and solving sum of squares (SOS) optimization programs. It uses a simple notation and a flexible and intuitive high-level user interface to specify the SOS programs. Currently these are solved using SeDuMi, a well-known semidefinite programming solver, while SOSTOOLS handles internally all the necessary reformulations and data … Read more

Pattern Search Methods for User-Provided Points:Application to Molecular Geometry Problems

This paper deals with the application of pattern search methods to the numerical solution of a class of molecular geometry problems with important applications in molecular physics and chemistry. The goal is to find a configuration of a cluster or a molecule with minimum total energy. The minimization problems in this class of geometry molecular … Read more

Using ACCPM in a simplicial decomposition algorithm for the traffic assignment problem

The purpose of the traffic assignment problem is to obtain a traffic flow pattern given a set of origin-destination travel demands and flow dependent link performance functions of a road network. In the general case, the traffic assignment problem can be formulated as a variational inequality, and several algorithms have been devised for its efficient … Read more

Condition and complexity measures for infeasibility certificates of systems of linear inequalities and their sensitivity analysis

We begin with a study of the infeasibility measures for linear programming problems. For this purpose, we consider feasibility problems in Karmarkar’s standard form. Our main focus is on the complexity measures which can be used to bound the amount of computational effort required to solve systems of linear inequalities and related problems in certain … Read more