An Exact Algorithm for the Partition Coloring Problem

We study the Partition Coloring Problem (PCP), a generalization of the Vertex Coloring Problem where the vertex set is partitioned. The PCP asks to select one vertex for each subset of the partition in such a way that the chromatic number of the induced graph is minimum. We propose a new Integer Linear Programming formulation … Read more

Decomposition of loosely coupled integer programs: A multiobjective perspective

We consider integer programming (IP) problems consisting of (possibly a large number of) subsystems and a small number of coupling constraints that link variables from different subsystems. Such problems are called loosely coupled or nearly decomposable. Motivated by recent developments in multiobjective programming (MOP), we develop a MOP-based decomposition algorithm to solve loosely coupled IPs. … Read more

A branch-price-and-cut algorithm for the vehicle routing problem with time windows and multiple deliverymen

We address a variant of the vehicle routing problem with time windows (VRPTW) that includes the decision of how many deliverymen should be assigned to each vehicle. In this variant, the service time at each customer depends on the size of the respective demand and on the number of deliverymen assigned to visit this customer. … Read more

Column Generation based Alternating Direction Methods for solving MINLPs

Traditional decomposition based branch-and-bound algorithms, like branch-and-price, can be very efficient if the duality gap is not too large. However, if this is not the case, the branch-and-bound tree may grow rapidly, preventing the method to find a good solution. In this paper, we present a new decompositon algorithm, called ADGO (Alternating Direction Global Optimization … Read more

Another pedagogy for mixed-integer Gomory

We present a version of GMI (Gomory mixed-integer) cuts in a way so that they are derived with respect to a “dual form” mixed-integer optimization problem and applied on the standard-form primal side as columns, using the primal simplex algorithm. This follows the general scheme of He and Lee, who did the case of Gomory … Read more

Lower bounding procedure for the Asymmetric Quadratic Traveling Salesman Problem

In this paper we consider the Asymmetric Quadratic Traveling Salesman Problem. Given a directed graph and a function that maps every pair of consecutive arcs to a cost, the problem consists in finding a cycle that visits every vertex exactly once and such that the sum of the costs is minimum. We propose an extended … Read more

Submodular Minimization in the Context of Modern LP and MILP Methods and Solvers

We consider the application of mixed-integer linear programming (MILP) solvers to the minimization of submodular functions. We evaluate common large-scale linear-programming (LP) techniques (e.g., column generation, row generation, dual stabilization) for solving a LP reformulation of the submodular minimization (SM) problem. We present heuristics based on the LP framework and a MILP solver. We evaluated … Read more

Branch-and-bound for bi-objective integer programming

In Pareto bi-objective integer optimization the optimal result corresponds to a set of non- dominated solutions. We propose a generic bi-objective branch-and-bound algorithm that uses a problem-independent branching rule exploiting available integer solutions, and cutting plane generation taking advantage of integer objective values. The developed algorithm is applied to the bi-objective team orienteering problem with … Read more

Ray Projection for Optimizing Polytopes with Prohibitively Many Constraints in Set-Covering Column Generation

A recurrent task in mathematical programming requires optimizing polytopes with prohibitively-many constraints, e.g., the primal polytope in cutting-plane methods or the dual polytope in Column Generation (CG). This paper is devoted to the ray projection technique for optimizing such polytopes: start from a feasible solution and advance on a given ray direction until intersecting a … Read more

Large-scale optimization with the primal-dual column generation method

The primal-dual column generation method (PDCGM) is a general-purpose column generation technique that relies on the primal-dual interior point method to solve the restricted master problems. The use of this interior point method variant allows to obtain suboptimal and well-centered dual solutions which naturally stabilizes the column generation. A reduction in the number of calls … Read more