Efficient global unconstrained black box optimization

For the unconstrained optimization of black box functions, this paper introduces a new randomized algorithm called VRBBO. In practice, VRBBO matches the quality of other state-of-the-art algorithms for finding, in small and large dimensions, a local minimizer with reasonable accuracy. Although our theory guarantees only local minimizers our heuristic techniques turn VRBBO into an efficient … Read more

The Cost of Not Knowing Enough: Mixed-Integer Optimization with Implicit Lipschitz Nonlinearities

It is folklore knowledge that nonconvex mixed-integer nonlinear optimization problems can be notoriously hard to solve in practice. In this paper we go one step further and drop analytical properties that are usually taken for granted in mixed-integer nonlinear optimization. First, we only assume Lipschitz continuity of the nonlinear functions and additionally consider multivariate implicit … Read more

MIQP-Based Algorithm for the Global Solution of Economic Dispatch Problems with Valve-Point Effects

Even in a static setting, the economic load dispatch problem (ELDP)—namely the cost-optimal distribution of power among generating units to meet a specific demand subject to system constraints—turns out to be a challenge owing to the consideration of valve-point effects (VPE), which make the cost function nonsmooth and nonconvex. We present a new method, termed … Read more

A Branch-and-Bound based Algorithm for Nonconvex Multiobjective Optimization

A new branch-and-bound based algorithm for smooth nonconvex multiobjective optimization problems with convex constraints is presented. The algorithm computes an $(\varepsilon,\delta)$-approximation of all globally optimal solutions. We introduce the algorithm which uses selection rules, discarding and termination tests. The discarding tests are the most important aspect, as they examine in different ways whether a box … Read more

Global optimization of mixed-integer ODE constrained network problems using the example of stationary gas transport

In this paper we propose a new approach for finding global solutions of mixed-integer nonlinear optimization problems with ordinary differential equation constraints on networks. Instead of using a first discretize then optimize approach, we combine spatial and variable branching with appropriate discretizations of the differential equations to derive relaxations of the original problem. To construct … Read more

Minotaur: A Mixed-Integer Nonlinear Optimization Toolkit

We present a flexible framework for general mixed-integer nonlinear programming (MINLP), called Minotaur, that enables both algorithm exploration and structure exploitation without compromising computational efficiency. This paper documents the concepts and classes in our framework and shows that our implementations of standard MINLP techniques are efficient compared with other state-of-the-art solvers. We then describe structure-exploiting … Read more

Invex Optimization Revisited

Given a non-convex optimization problem, we study conditions under which every Karush-Kuhn-Tucker (KKT) point is a global optimizer. This property is known as KT-invexity and allows to identify the subset of problems where an interior point method always converges to a global optimizer. In this work, we provide necessary conditions for KT-invexity in n-dimensions and … Read more

Solving Mixed-Integer Nonlinear Programs using Adaptively Refined Mixed-Integer Linear Programs

We propose a method for solving mixed-integer nonlinear programs (MINLPs) to global optimality by discretization of occuring nonlinearities. The main idea is based on using piecewise linear functions to construct mixed-integer linear program (MIP) relaxations of the underlying MINLP. In order to find a global optimum of the given MINLP we develope an iterative algorithm … Read more

Complex Number Formulation and Convex Relaxations for Aircraft Conflict Resolution

We present a novel complex number formulation along with tight convex relaxations for the aircraft conflict resolution problem. Our approach combines both speed and heading control and provides global optimality guarantees despite non-convexities in the feasible region. As a side result, we present a new characterization of the conflict separation condition in the form of … Read more

Matrix Minor Reformulation and SOCP-based Spatial Branch-and-Cut Method for the AC Optimal Power Flow Problem

Alternating current optimal power flow (AC OPF) is one of the most fundamental optimization problems in electrical power systems. It can be formulated as a semidefinite program (SDP) with rank constraints. Solving AC OPF, that is, obtaining near optimal primal solutions as well as high quality dual bounds for this non-convex program, presents a major … Read more