An Interior-Point Trust-Funnel Algorithm for Nonlinear Optimization

We present an interior-point trust-funnel algorithm for solving large-scale nonlinear optimization problems. The method is based on an approach proposed by Gould and Toint (Math Prog 122(1):155–196, 2010) that focused on solving equality constrained problems. Our method is similar in that it achieves global convergence guarantees by combining a trust-region methodology with a funnel mechanism, … Read more

A First Course in Linear Optimization, version 3.0

This is the “front matter” of a new open-source book on Linear Optimization. The book and associated Matlab/AMPL/Mathematica programs are freely available from: https://sites.google.com/site/jonleewebpage/home/publications/#book CitationJon Lee, “A First Course in Linear Optimization”, Third Edition, Reex Press, 2013-2017.ArticleDownload View PDF

An inexact block-decomposition method for extra large-scale conic semidefinite programming

In this paper, we present an inexact block-decomposition (BD) first-order method for solving standard form conic semidefinite programming (SDP) which avoids computations of exact projections onto the manifold defined by the affine constraints and, as a result, is able to handle extra large SDP instances. The method is based on a two-block reformulation of the … Read more

Optimization Techniques for the Brazilian Natural Gas Network Planning Problem

This work reports on modeling and numerical experience in solving the long-term design and operation planning problem of the Brazilian natural gas network. A stochastic approach to address uncertainties related to the gas demand is considered. Representing uncertainties by finitely many scenarios increases the size of the resulting optimization problem, and therefore the difficulty to … Read more

A filter method with unified step computation for nonlinear optimization

We present a filter linesearch method for solving general nonlinear and nonconvex optimization problems. The method is of the filter variety, but uses a robust (always feasible) subproblem based on an exact penalty function to compute a search direction. This contrasts traditional filter methods that use a (separate) restoration phase designed to reduce infeasibility until … Read more

Acceleration and Stabilization Techniques for Column Generation Applied to Capacitated Resource Management Problems

This research presents a very efficient method of solving a broad class of large-scale capacitated resource management problems by introducing a new formulation and decomposition. A heuristic called Likelihood of Assignment is utilized not only to find high quality initial integer feasible solutions, but also to guide the Branch-and-Price (B&P) Algorithm towards stabilization. Although Column … Read more

An Adaptive Augmented Lagrangian Method for Large-Scale Constrained Optimization

We propose an augmented Lagrangian algorithm for solving large-scale constrained optimization problems. The novel feature of the algorithm is an adaptive update for the penalty parameter motivated by recently proposed techniques for exact penalty methods. This adaptive updating scheme greatly improves the overall performance of the algorithm without sacrificing the strengths of the core augmented … Read more

A Globally Convergent Primal-Dual Active-Set Framework for Large-Scale Convex Quadratic Optimization

We present a primal-dual active-set framework for solving large-scale convex quadratic optimization problems (QPs). In contrast to classical active-set methods, our framework allows for multiple simultaneous changes in the active- set estimate, which often leads to rapid identification of the optimal active-set regardless of the initial estimate. The iterates of our framework are the active-set … Read more

A randomized Mirror-Prox method for solving structured large-scale matrix saddle-point problems

In this paper, we derive a randomized version of the Mirror-Prox method for solving some structured matrix saddle-point problems, such as the maximal eigenvalue minimization problem. Deterministic first-order schemes, such as Nesterov’s Smoothing Techniques or standard Mirror-Prox methods, require the exact computation of a matrix exponential at every iteration, limiting the size of the problems … Read more

Dynamic Graph Generation for Large Scale Operational Train Timetabling

The aim of operational train timetabling is to find a conflict free timetable for a set of passenger and freight trains with predefined stopping time windows along given routes in an infrastructure network so that station capacities and train dependent running and headway times are observed. Typical models for this problem are based on time-discretized … Read more