An Improved Flow-based Formulation and Reduction Principles for the Minimum Connectivity Inference Problem

The Minimum Connectivity Inference (MCI) problem represents an NP-hard generalisation of the well-known minimum spanning tree problem and has been studied in different fields of research independently. Let an undirected complete graph and finitely many subsets (clusters) of its vertex set be given. Then, the MCI problem is to find a minimal subset of edges … Read more

Combinatorial Integral Approximation Decompositions for Mixed-Integer Optimal Control

Solving mixed-integer nonlinear programs (MINLPs) is hard in theory and practice. Decomposing the nonlinear and the integer part seems promising from a computational point of view. In general, however, no bounds on the objective value gap can be guaranteed and iterative procedures with potentially many subproblems are necessary. The situation is different for mixed-integer optimal … Read more

Robust Optimal Discrete Arc Sizing for Tree-Shaped Potential Networks

We consider the problem of discrete arc sizing for tree-shaped potential networks with respect to infinitely many demand scenarios. This means that the arc sizes need to be feasible for an infinite set of scenarios. The problem can be seen as a strictly robust counterpart of a single-scenario network design problem, which is shown to … Read more

Bounding and Counting Linear Regions of Deep Neural Networks

We investigate the complexity of deep neural networks (DNN) that represent piecewise linear (PWL) functions. In particular, we study the number of linear regions, i.e. pieces, that a PWL function represented by a DNN can attain, both theoretically and empirically. We present (i) tighter upper and lower bounds for the maximum number of linear regions … Read more

The SCIP Optimization Suite 5.0

This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 % faster than SCIP 4.0 and over … Read more

A decentralized framework for the optimal coordination of distributed energy resources

Demand-response aggregators are faced with the challenge of how to best manage numerous and heterogeneous Distributed Energy Resources (DERs). This paper proposes a decentralized methodology for optimal coordination of DERs. The proposed approach is based on Dantzig-Wolfe decomposition and column generation, thus allowing to integrate any type of resource whose operation can be formulated within … Read more

MILP feasibility by nonlinear programming

We discuss a tightly feasible mixed-integer linear programs arising in the energy industry, for which branch-and-bound appears to be ineffective. We consider its hardness, measure the probability that randomly generated instances are feasible or almost feasible, and introduce heuristic solution methods based on relaxing different constraints of the problem. We show the computational efficiency of … Read more

The Inmate Assignment and Scheduling Problem and its Application in the PA Department of Correction

The inmate assignment project, in close collaboration with the Pennsylvania Department of Corrections (PADoC), took five years from start to successful implementation. In this project, we developed the Inmate Assignment Decision Support System (IADSS), where the primary goal is simultaneous and system-wide optimal assignment of inmates to correctional institutions (CIs). We develop a novel hier- … Read more

Best subset selection of factors affecting influenza spread using bi-objective optimization

A typical approach for computing an optimal strategy for non-pharmaceutical interventions during an influenza outbreak is based on statistical ANOVA. In this study, for the first time, we propose to use bi-objective mixed integer linear programming. Our approach employs an existing agent-based simulation model and statistical design of experiments presented in Martinez and Das (2014) … Read more

Electric Power Infrastructure Planning: Mixed-Integer Programming Model and Nested Decomposition Algorithm

This paper addresses the long-term planning of electric power infrastructures considering high renewable penetration. To capture the intermittency of these sources, we propose a deterministic multi-scale Mixed-Integer Linear Programming (MILP) formulation that simultaneously considers annual generation investment decisions and hourly operational decisions. We adopt judicious approximations and aggregations to improve its tractability. Moreover, to overcome … Read more