Optimal Black Start Allocation for Power System Restoration

Equipment failures, operator errors, natural disasters and cyber-attacks can and have caused extended blackouts of the electric grid. Even though such events are rare, preparedness for them is critical because extended power outages endanger human lives, compromise national security, or result in economic losses of billions of dollars. Since most of the generating units cannot … Read more

Least cost influence propagation in (social) networks

Influence maximization problems aim to identify key players in (social) networks and are typically motivated from viral marketing. In this work, we introduce and study the Generalized Least Cost Influence Problem (GLCIP) that generalizes many previously considered problem variants and allows to overcome some of their limitations. A formulation that is based on the concept … Read more

Conflict Driven Diving for Mixed Integer Programming

The analysis of infeasibility plays an important role in solving satisfiability problems (SAT) and mixed integer programs (MIPs). In mixed integer programming, this procedure is called conflict analysis. So far, modern MIP solvers use conflict analysis only for propagation and improving the dual bound, i.e., fathoming nodes that cannot contain feasible solutions. In this short … Read more

Approximation algorithms for the covering-type k-violation linear program

We study the covering-type k-violation linear program where at most $k$ of the constraints can be violated. This problem is formulated as a mixed integer program and known to be strongly NP-hard. In this paper, we present a simple (k+1)-approximation algorithm using a natural LP relaxation. We also show that the integrality gap of the … Read more

A mixed-integer branching approach for very small formulations of disjunctive constraints

We study the existence and construction of very small formulations for disjunctive constraints in optimization problems: that is, formulations that use very few integer variables and extra constraints. To accomplish this, we present a novel mixed-integer branching formulation framework, which preserves many of the favorable algorithmic properties of a traditional mixed-integer programming formulation, including amenability … Read more

Constraints reduction programming by subset selection: a study from numerical aspect

We consider a novel method entitled constraints reduction programming which aims to reduce the constraints in an optimization model. This method is derived from various applications of management or decision making, and has potential ability to handle a wider range of applications. Due to the high combinatorial complexity of underlying model, it is difficult to … Read more

The Vertex k-cut Problem

Given an undirected graph G = (V, E), a vertex k-cut of G is a vertex subset of V the removing of which disconnects the graph in at least k connected components. Given a graph G and an integer k greater than or equal to two, the vertex k-cut problem consists in finding a vertex … Read more

Facets of a mixed-integer bilinear covering set with bounds on variables

We derive a closed form description of the convex hull of mixed-integer bilinear covering set with bounds on the integer variables. This convex hull description is determined by considering some orthogonal disjunctive sets defined in a certain way. This description does not introduce any new variables, but consists of exponentially many inequalities. An extended formulation … Read more

A Mixed Integer Programming Model to Analyse and Optimise Patient Flow in a Surgical Suite.

Demand for healthcare services is growing rapidly in Australia and across the world, and rising healthcare expenditure is increasing pressure on sustainability of government-funded healthcare systems. In Australia, elective surgery waiting lists are growing and hospitals are struggling with a capacity shortage. To keep up with the rising demand, we need to be more efficient … Read more

Satisfiability Modulo Theories for Process Systems Engineering

Process systems engineers have long recognized the importance of both logic and optimization for automated decision-making. But modern challenges in process systems engineering could strongly benefit from methodological contributions in computer science. In particular, we propose satisfiability modulo theories (SMT) for process systems engineering applications. We motivate SMT using a series of test beds and … Read more