Cardinality Minimization, Constraints, and Regularization: A Survey

We survey optimization problems that involve the cardinality of variable vectors in constraints or the objective function. We provide a unified viewpoint on the general problem classes and models, and give concrete examples from diverse application fields such as signal and image processing, portfolio selection, or machine learning. The paper discusses general-purpose modeling techniques and … Read more

Second-Order Conic and Polyhedral Approximations of the Exponential Cone: Application to Mixed-Integer Exponential Conic Programs

Exponents and logarithms exist in many important applications such as logistic regression, maximum likelihood, relative entropy and so on. Since the exponential cone can be viewed as the epigraph of perspective of the natural exponential function or the hypograph of perspective of the natural logarithm function, many mixed-integer nonlinear convex programs involving exponential or logarithm … Read more

An Algorithm-Independent Measure of Progress for Linear Constraint Propagation

Propagation of linear constraints has become a crucial sub-routine in modern Mixed-Integer Programming (MIP) solvers. In practice, iterative algorithms with tolerance-based stopping criteria are used to avoid problems with slow or infinite convergence. However, these heuristic stopping criteria can pose difficulties for fairly comparing the efficiency of different implementations of iterative propagation algorithms in a … Read more

Inductive Linearization for Binary Quadratic Programs with Linear Constraints: A Computational Study

The computational performance of inductive linearizations for binary quadratic programs in combination with a mixed-integer programming solver is investigated for several combinatorial optimization problems and established benchmark instances. Apparently, a few of these are solved to optimality for the first time. Citation preprint (no internal series / number): University of Bonn, Germany June 11, 2021 … Read more

Single-neuron convexifications for binarized neural networks

Binarized neural networks are an important class of neural network in deep learning due to their computational efficiency. This paper contributes towards a better understanding of the structure of binarized neural networks, specifically, ideal convex representations of the activation functions used. We describe the convex hull of the graph of the signum activation function associated … Read more

Shapes and recession cones in mixed-integer convex representability

Mixed-integer convex representable (MICP-R) sets are those sets that can be represented exactly through a mixed-integer convex programming formulation. Following up on recent work by Lubin et al. (2017, 2020) we investigate structural geometric properties of MICP-R sets, which strongly differentiate them from the class of mixed-integer linear representable sets (MILP-R). First, we provide an … Read more

A Computational Status Update for Exact Rational Mixed Integer Programming

The last milestone achievement for the roundoff-error-free solution of general mixed integer programs over the rational numbers was a hybrid-precision branch-and-bound algorithm published by Cook, Koch, Steffy, and Wolter in 2013. We describe a substantial revision and extension of this framework that integrates symbolic presolving, features an exact repair step for solutions from primal heuristics, … Read more

Strong Optimal Classification Trees

Decision trees are among the most popular machine learning models and are used routinely in applications ranging from revenue management and medicine to bioinformatics. In this paper, we consider the problem of learning optimal binary classification trees with univariate splits. Literature on the topic has burgeoned in recent years, motivated both by the empirical suboptimality … Read more

A Survey on Mixed-Integer Programming Techniques in Bilevel Optimization

Bilevel optimization is a field of mathematical programming in which some variables are constrained to be the solution of another optimization problem. As a consequence, bilevel optimization is able to model hierarchical decision processes. This is appealing for modeling real-world problems, but it also makes the resulting optimization models hard to solve in theory and … Read more

An exact (re)optimization framework for real-time traffic management

In real-time traffic management, a new schedule for the vehicles must be computed whenever a deviation from the current plan is detected, or periodically after some time. If this time interval is relatively small, then each two consecutive instances are likely to be similar. We exploit this aspect to derive an exact reoptimization framework for … Read more