Efficient Formulations and Decomposition Approaches for Power Peak Reduction in Railway Traffic via Timetabling

Over the last few years, optimization models for the energy-efficient operation of railway traffic have received more and more attention, particularly in connection with timetable design. In this work, we study the effect of load management via timetabling. The idea is to consider trains as time-flexible consumers in the railway power supply network and to … Read more

Inverse Mixed Integer Optimization: Polyhedral Insights and Trust Region Methods

Inverse optimization – determining parameters of an optimization problem that render a given solution optimal – has received increasing attention in recent years. While significant inverse optimization literature exists for convex optimization problems, there have been few advances for discrete problems, despite the ubiquity of applications that fundamentally rely on discrete decision-making. In this paper, … Read more

An Adaptive Patch Approximation Algorithm for Bicriteria Convex Mixed Integer problems

Pareto frontiers of bicriteria continuous convex problems can be efficiently computed and optimal theoretical performance bounds have been established. In the case of bicriteria mixed-integer problems, the approximation of the Pareto frontier becomes, however, significantly harder. In this paper, we propose a new algorithm for approximating the Pareto frontier of bicriteria mixed-integer programs with convex … Read more

Exact and heuristic approaches to reschedule helicopter flights for personnel transportation in the oil industry

This paper addresses a real-life short-term rescheduling problem of helicopter flights from one onshore airport to several maritime units in the context of the oil industry. This is a complex and challenging problem to solve because of the particular characteristics observed in practice, such as pending flights transferred from previous days with different recovering priorities, … Read more

Mixed Integer Bilevel Optimization with k-optimal Follower: A Hierarchy of Bounds

We consider mixed integer bilevel linear optimization problems in which the decision variables of the lower-level (follower’s) problem are all binary. We propose a general modeling and solution framework motivated by the practical reality that in a Stackelberg game, the follower does not always solve their optimization problem to optimality. They may instead implement a … Read more

Combination Chemotherapy Optimization

Chemotherapy is one of the primary modalities of cancer treatment. Chemotherapy drug administration is a complex problem that often requires expensive clinical trials to evaluate potential regimens. One way to alleviate this burden and better inform future trials is to build reliable models for drug administration. Previous chemotherapy optimization models have mainly relied on optimal … Read more

Solving Previously Unsolved MIP Instances with ParaSCIP on Supercomputers by using up to 80,000 Cores

Mixed-integer programming (MIP) problem is arguably among the hardest classes of optimization problems. This paper describes how we solved 21 previously unsolved MIP instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in … Read more

Exact and Approximation Algorithms for Sparse PCA

Sparse Principal Component Analysis (SPCA) is designed to enhance the interpretability of traditional Principal Component Analysis (PCA) by optimally selecting a subset of features that comprise the first principal component. Given the NP-hard nature of SPCA, most current approaches resort to approximate solutions, typically achieved through tractable semidefinite programs (SDPs) or heuristic methods. To solve SPCA to … Read more

Two-Stage Sort Planning for Express Parcel Delivery

Recent years have brought significant changes in the operations of parcel transportation services, most notably due to the growing demand for e-commerce worldwide. Parcel sortation systems are used within sorting facilities in these transportation networks to enable the execution of effective consolidation plans with low per-unit handling and shipping costs. Designing and implementing effective parcel … Read more

Solving Large-Scale Sparse PCA to Certifiable (Near) Optimality

Sparse principal component analysis (PCA) is a popular dimensionality reduction technique for obtaining principal components which are linear combinations of a small subset of the original features. Existing approaches cannot supply certifiably optimal principal components with more than $p=100s$ of variables. By reformulating sparse PCA as a convex mixed-integer semidefinite optimization problem, we design a … Read more