A general merit function-based global convergent framework for nonlinear optimization

In this paper, we revisit the convergence theory of the inexact restoration paradigm for non-linear optimization. The paper first identifies the basic elements of a globally convergent method based on merit functions. Then, the inexact restoration method that employs a two-phase iteration is introduced as a special case. A specific implementation is presented that is … Read more

The Role of Level-Set Geometry on the Performance of PDHG for Conic Linear Optimization

We consider solving huge-scale instances of (convex) conic linear optimization problems, at the scale where matrix-factorization-free methods are attractive or necessary. The restarted primal-dual hybrid gradient method (rPDHG) — with heuristic enhancements and GPU implementation — has been very successful in solving huge-scale linear programming (LP) problems; however its application to more general conic convex … Read more

On the global convergence of a general class of augmented Lagrangian methods

In [E. G. Birgin, R. Castillo and J. M. Martínez, Computational Optimization and Applications 31, pp. 31-55, 2005], a general class of safeguarded augmented Lagrangian methods is introduced which includes a large number of different methods from the literature. Besides a numerical comparison including 65 different methods, primal-dual global convergence to a KKT point is … Read more

Accelerated derivative-free spectral residual method for nonlinear systems of equations

Spectral residual methods are powerful tools for solving nonlinear systems of equations without derivatives. In a recent paper, it was shown that an acceleration technique based on the Sequential Secant Method can greatly improve its efficiency and robustness. In the present work, an R implementation of the method is presented. Numerical experiments with a widely … Read more

Globally convergent Newton-type methods for multiobjective optimization

We propose two Newton-type methods for solving (possibly) nonconvex unconstrained multiobjective optimization problems. The first is directly inspired by the Newton method designed to solve convex problems, whereas  the second uses  second-order information of the objective functions with ingredients of the steepest descent method.  One of the key points of our approaches  is to impose … Read more

Penalized stochastic gradient methods for stochastic convex optimization with expectation constraints

Stochastic gradient method and its variants are simple yet effective for minimizing an expectation function over a closed convex set. However, none of these methods are applicable to solve stochastic programs with expectation constraints, since the projection onto the feasible set is prohibitive. To deal with the expectation constrained stochastic convex optimization problems, we propose … Read more

Complexity and performance of an Augmented Lagrangian algorithm

Algencan is a well established safeguarded Augmented Lagrangian algorithm introduced in [R. Andreani, E. G. Birgin, J. M. Martínez and M. L. Schuverdt, On Augmented Lagrangian methods with general lower-level constraints, SIAM Journal on Optimization 18, pp. 1286-1309, 2008]. Complexity results that report its worst-case behavior in terms of iterations and evaluations of functions and … Read more

Hybrid methods for nonlinear least squares problems

This contribution contains a description and analysis of effective methods for minimization of the nonlinear least squares function $F(x) = (1/2) f^T(x) f(x)$, where $x \in R^n$ and $f \in R^m$, together with extensive computational tests and comparisons of the introduced methods. All hybrid methods are described in detail and their global convergence is proved … Read more

Numerical solution of generalized minimax problems

This contribution contains the description and investigation of four numerical methods for solving generalized minimax problems, which consists in the minimization of functions which are compositions of special smooth convex functions with maxima of smooth functions (the most important problem of this type is the sum of maxima of smooth functions). Section~1 is introductory. In … Read more

New quasi-Newton method for solving systems of nonlinear equations

In this report, we propose the new Broyden method for solving systems of nonlinear equations, which uses the first derivatives, but it is more efficient than the Newton method (measured by the computational time) for larger dense systems. The new method updates QR decompositions of nonsymmetric approximations of the Jacobian matrix, so it requires $O(n^2)$ … Read more