An Active Set Algorithm for Robust Combinatorial Optimization Based on Separation Oracles

We address combinatorial optimization problems with uncertain coefficients varying over ellipsoidal uncertainty sets. The robust counterpart of such a problem can be rewritten as a second-oder cone program (SOCP) with integrality constraints. We propose a branch-and-bound algorithm where dual bounds are computed by means of an active set algorithm. The latter is applied to the … Read more

Models and algorithms for the robust resource constrained shortest path problem

We study the robust resource constrained shortest path problem (RCSPP) under uncertainty in cost and multiple resource consumption. Contrary to the deterministic RCSPP where the cost and the consumption of resources on an arc are known and fixed, the robust RCSPP models the case where both the cost and the resource consumption are random, and … Read more

Robust Optimal Discrete Arc Sizing for Tree-Shaped Potential Networks

We consider the problem of discrete arc sizing for tree-shaped potential networks with respect to infinitely many demand scenarios. This means that the arc sizes need to be feasible for an infinite set of scenarios. The problem can be seen as a strictly robust counterpart of a single-scenario network design problem, which is shown to … Read more

Reducing conservatism in Robust Optimization

Although Robust Optimization is a powerful technique in dealing with uncertainty in optimization, its solutions can be too conservative when it leads to an objective value much worse than the nominal solution or even to infeasibility of the robust problem. In practice, this can lead to robust solutions being disregarded in favor of the nominal … Read more

Robust optimization for models with uncertain SOC and SDP constraints

In this paper we consider uncertain second-order cone (SOC) and semidefinite programming (SDP) constraints with polyhedral uncertainty, which are in general computationally intractable. We propose to reformulate an uncertain SOC or SDP constraint as a set of adjustable robust linear optimization constraints with an ellipsoidal or semidefinite representable uncertainty set, respectively. The resulting adjustable problem … Read more

A Primal-Dual Lifting Scheme for Two-Stage Robust Optimization

Two-stage robust optimization problems, in which decisions are taken both in anticipation of and in response to the observation of an unknown parameter vector from within an uncertainty set, are notoriously challenging. In this paper, we develop convergent hierarchies of primal (conservative) and dual (progressive) bounds for these problems that trade off the competing goals … Read more

Derivative-Free Robust Optimization by Outer Approximations

We develop an algorithm for minimax problems that arise in robust optimization in the absence of objective function derivatives. The algorithm utilizes an extension of methods for inexact outer approximation in sampling a potentially infinite-cardinality uncertainty set. Clarke stationarity of the algorithm output is established alongside desirable features of the model-based trust-region subproblems encountered. We … Read more

Robust Sensitivity Analysis for Linear Programming with Ellipsoidal Perturbation

Given an originally robust optimal decision and allowing perturbation parameters of the linear programming problem to run through a maximum uncertainty set controlled by a variable of perturbation radius, we do robust sensitivity analysis for the robust linear programming problem in two scenarios. One is to keep the original decision still robust optimal, the other … Read more

Robust combinatorial optimization with knapsack uncertainty

We study in this paper min max robust combinatorial optimization problems for an uncertainty polytope that is defined by knapsack constraints, either in the space of the optimization variables or in an extended space. We provide exact and approximation algorithms that extend the iterative algorithms proposed by Bertismas and Sim (2003). We also study the … Read more

Constraint Generation for Two-Stage Robust Network Flow Problem

In this paper, we propose new constraint generation algorithms for solving the two-stage robust minimum cost flow problem, a problem that arises from various applications such as transportation and logistics. In order to develop efficient algorithms under general polyhedral uncertainty set, we repeatedly exploit the network-flow structure to reformulate the two-stage robust minimum cost flow … Read more