A Semidefinite Hierarchy for Containment of Spectrahedra

A spectrahedron is the positivity region of a linear matrix pencil, thus defining the feasible set of a semidefinite program. We propose and study a hierarchy of sufficient semidefinite conditions to certify the containment of a spectrahedron in another one. This approach comes from applying a moment relaxation to a suitable polynomial optimization formulation. The … Read more

Rational sums of hermitian squares of free noncommutative polynomials

In this paper we consider polynomials in noncommuting variables that admit sum of hermitian squares and commutators decompositions. We recall algorithms for finding decompositions of this type that are based on semidefinite programming. The main part of the article investigates how to find such decomposition with rational coefficients if the original polynomial has rational coefficients. … Read more

Faster, but Weaker, Relaxations for Quadratically Constrained Quadratic Programs

We introduce a new relaxation framework for nonconvex quadratically constrained quadratic programs (QCQPs). In contrast to existing relaxations based on semidefinite programming (SDP), our relaxations incorporate features of both SDP and second order cone programming (SOCP) and, as a result, solve more quickly than SDP. A downside is that the calculated bounds are weaker than … Read more

The Trust Region Subproblem with Non-Intersecting Linear Constraints

This paper studies an extended trust region subproblem (eTRS)in which the trust region intersects the unit ball with m linear inequality constraints. When m=0, m=1, or m=2 and the linear constraints are parallel, it is known that the eTRS optimal value equals the optimal value of a particular convex relaxation, which is solvable in polynomial … Read more

Positive Semidefinite Matrix Completion, Universal Rigidity and the Strong Arnold Property

This paper addresses the following three topics: positive semidefinite (psd) matrix completions, universal rigidity of frameworks, and the Strong Arnold Property (SAP). We show some strong connections among these topics, using semidefinite programming as unifying theme. Our main contribution is a sufficient condition for constructing partial psd matrices which admit a unique completion to a … Read more

VSDP: A Matlab toolbox for verified semidefinite-quadratic-linear programming

VSDP is a software package that is designed for the computation of verified results in conic programming. The current version of VSDP supports the constraint cone consisting of the product of semidefinite cones, second-order cones and the nonnegative orthant. It provides functions for computing rigorous error bounds of the true optimal value, verified enclosures of … Read more

A Primal-Dual Regularized Interior-Point Method for Semidefinite Programming

Interior-point methods in semidefinite programming (SDP) require the solution of a sequence of linear systems which are used to derive the search directions. Safeguards are typically required in order to handle rank-deficient Jacobians and free variables. We generalize the primal-dual regularization of \cite{friedlander-orban-2012} to SDP and show that it is possible to recover an optimal … Read more

A Semidefinite Approach to the $ Cover Problem

We apply theta body relaxations to the $K_i$ cover problem and use this to show polynomial time solvability for certain classes of graphs. In particular, we give an effective relaxation where all $K_i$-$p$-hole facets are valid, addressing an open question of Conforti et al \cite{conforti}. For the triangle free problem, we show for $K_n$ that … Read more

A QCQP Approach to Triangulation

Triangulation of a three-dimensional point from $n\ge 2$ two-dimensional images can be formulated as a quadratically constrained quadratic program. We propose an algorithm to extract candidate solutions to this problem from its semidefinite programming relaxations. We then describe a sufficient condition and a polynomial time test for certifying when such a solution is optimal. This … Read more

A first-order block-decomposition method for solving two-easy-block structured semidefinite programs

In this paper, we consider a first-order block-decomposition method for minimizing the sum of a convex differentiable function with Lipschitz continuous gradient, and two other proper closed convex (possibly, nonsmooth) functions with easily computable resolvents. The method presented contains two important ingredients from a computational point of view, namely: an adaptive choice of stepsize for … Read more