Approximating the Chromatic Number of a Graph by Semidefinite Programming

We investigate hierarchies of semidefinite approximations for the chromatic number $\chi(G)$ of a graph $G$. We introduce an operator $\Psi$ mapping any graph parameter $\beta(G)$, nested between the stability number $\alpha(G)$ and $\chi(\bar G)$, to a new graph parameter $\Psi_\beta(G)$, nested between $\omega(G)$ and $\chi(G)$; $\Psi_\beta(G)$ is polynomial time computable if $\beta(G)$ is. As an … Read more

On the Implementation of Interior Point Decomposition Algorithms for Two-Stage Stochastic Conic

In this paper we develop a practical primal interior decomposition algorithm for two-stage stochastic programming problems. The framework of this algorithm is similar to the framework in Mehrotra and \”{Ozevin} \cite{MO04a,MO04b} and Zhao \cite{GZ01}, however their algorithm is altered in a simple yet fundamental way to achieve practical performance. In particular, this new algorithm weighs … Read more

Variational Two-electron Reduced Density Matrix Theory for Many-electron Atoms and Molecules: Implementation of the Spin- and Symmetry-adapted T2 Condition through First-order Semidefinite Programming

The energy and properties of a many-electron atom or molecule may be directly computed from a variational optimization of a two-electron reduced density matrix (2-RDM) that is constrained to represent many-electron quantum systems. In this paper we implement a variational 2-RDM method with a representability constraint, known as the $T_2$ condition. The optimization of the … Read more

Semidefinite Optimization Approaches for Satisfiability and Maximum-Satisfiability Problems

Semidefinite optimization, commonly referred to as semidefinite programming, has been a remarkably active area of research in optimization during the last decade. For combinatorial problems in particular, semidefinite programming has had a truly significant impact. This paper surveys some of the results obtained in the application of semidefinite programming to satisfiability and maximum-satisfiability problems. The … Read more

Embedded in the Shadow of the Separator

We study the problem of maximizing the second smallest eigenvalue of the Laplace matrix of a graph over all nonnegative edge weightings with bounded total weight. The optimal value is the \emph{absolute algebraic connectivity} introduced by Fiedler, who proved tight connections of this value to the connectivity of the graph. Using semidefinite programming techniques and … Read more

A copositive programming approach to graph partitioning

We consider 3-partitioning the vertices of a graph into sets $S_1, S_2$ and $S_3$ of specified cardinalities, such that the total weight of all edges joining $S_1$ and $S_2$ is minimized. This problem is closely related to several NP-hard problems like determining the bandwidth or finding a vertex separator in a graph. We show that … Read more

Sparse Covariance Selection via Robust Maximum Likelihood Estimation

We address a problem of covariance selection, where we seek a trade-off between a high likelihood against the number of non-zero elements in the inverse covariance matrix. We solve a maximum likelihood problem with a penalty term given by the sum of absolute values of the elements of the inverse covariance matrix, and allow for … Read more

Efficient and cheap bounds for (standard) quadratic optimization

A standard quadratic optimization problem (StQP) consists in minimizing a quadratic form over a simplex. A number of problems can be transformed into a StQP, including the general quadratic problem over a polytope and the maximum clique problem in a graph. In this paper we present several polynomial-time bounds for StQP ranging from very simple … Read more

Analyticity of weighted central path and error bound for semidefinite programming

The purpose of this paper is two-fold. Firstly, we show that every Cholesky-based weighted central path for semidefinite programming is analytic under strict complementarity. This result is applied to homogeneous cone programming to show that the central paths defined by the known class of optimal self-concordant barriers are analytic in the presence of strictly complementary … Read more

Semidefinite Bounds for the Stability Number of a Graph via Sums of Squares of Polynomials

Lov\’ asz and Schrijver [1991] have constructed semidefinite relaxations for the stable set polytope of a graph $G=(V,E)$ by a sequence of lift-and-project operations; their procedure finds the stable set polytope in at most $\alpha(G)$ steps, where $\alpha(G)$ is the stability number of $G$. Two other hierarchies of semidefinite bounds for the stability number have … Read more