Sparse Polynomial Matrix Optimization

A polynomial matrix inequality is a statement that a symmetric polynomial matrix is positive semidefinite over a given constraint set. Polynomial matrix optimization concerns minimizing the smallest eigenvalue of a symmetric polynomial matrix subject to a tuple of polynomial matrix inequalities. This work explores the use of sparsity methods in reducing the complexity of sum-of-squares … Read more

Exploiting Sign Symmetries in Minimizing Sums of Rational Functions

This paper is devoted to the problem of minimizing a sum of rational functions over a basic semialgebraic set. We provide a hierarchy of sum of squares (SOS) relaxations that is dual to the generalized moment problem approach due to Bugarin, Henrion, and Lasserre. The investigation of the dual SOS aspect offers two benefits: 1) … Read more

Strengthening Lasserre’s Hierarchy in Real and Complex Polynomial Optimization

We establish a connection between multiplication operators and shift operators. Moreover, we derive positive semidefinite conditions of finite rank moment sequences and use these conditions to strengthen Lasserre’s hierarchy for real and complex polynomial optimization. Integration of the strengthening technique with sparsity is considered. Extensive numerical experiments show that our strengthening technique can significantly improve … Read more

Sparse Polynomial Optimization with Unbounded Sets

This paper considers sparse polynomial optimization with unbounded sets. When the problem possesses correlative sparsity, we propose a sparse homogenized Moment-SOS hierarchy with perturbations to solve it. The new hierarchy introduces one extra auxiliary variable for each variable clique according to the correlative sparsity pattern. Under the running intersection property, we prove that this hierarchy … Read more

A real moment-HSOS hierarchy for complex polynomial optimization with real coefficients

This paper proposes a real moment-HSOS hierarchy for complex polynomial optimization problems with real coefficients. We show that this hierarchy provides the same sequence of lower bounds as the complex analogue, yet is much cheaper to solve. In addition, we prove that global optimality is achieved when the ranks of the moment matrix and certain … Read more

On Exact and Inexact RLT and SDP-RLT Relaxations of Quadratic Programs with Box Constraints

Quadratic programs with box constraints involve minimizing a possibly nonconvex quadratic function subject to lower and upper bounds on each variable. This is a well-known NP-hard problem that frequently arises in various applications. We focus on two convex relaxations, namely the RLT (Reformulation-Linearization Technique) relaxation and the SDP-RLT relaxation obtained by adding semidefinite constraints to … Read more

An SDP Relaxation for the Sparse Integer Least Square Problem

In this paper, we study the polynomial approximability or solvability of sparse integer least square problem (SILS), which is the NP-hard variant of the least square problem, where we only consider sparse {0, ±1}-vectors. We propose an l1-based SDP relaxation to SILS, and introduce a randomized algorithm for SILS based on the SDP relaxation. In … Read more

Partial Lasserre relaxation for sparse Max-Cut

A common approach to solve or find bounds of polynomial optimization problems like Max-Cut is to use the first level of the Lasserre hierarchy. Higher levels of the Lasserre hierarchy provide tighter bounds, but solving these relaxations is usually computationally intractable. We propose to strengthen the first level relaxation for sparse Max-Cut problems using constraints … Read more

A Restricted Dual Peaceman-Rachford Splitting Method for QAP

We revisit and strengthen splitting methods for solving doubly nonnegative, DNN, relaxations of the quadratic assignment problem, QAP. We use a modified restricted contractive splitting method, rPRSM, approach. Our strengthened bounds and new dual multiplier estimates improve on the bounds and convergence results in the literature. CitationDepartment of Combinatorics & Optimization, University of Waterloo, Canada,06/2019ArticleDownload … Read more

A Strictly Contractive Peaceman-Rachford Splitting Method for the Doubly Nonnegative Relaxation of the Minimum Cut Problem

The minimum cut problem, MC, and the special case of the vertex separator problem, consists in partitioning the set of nodes of a graph G into k subsets of given sizes in order to minimize the number of edges cut after removing the k-th set. Previous work on this topic uses eigenvalue, semidefinite programming, SDP, … Read more