Worst-Case Complexity of an SQP Method for Nonlinear Equality Constrained Stochastic Optimization

A worst-case complexity bound is proved for a sequential quadratic optimization (commonly known as SQP) algorithm that has been designed for solving optimization problems involving a stochastic objective function and deterministic nonlinear equality constraints. Barring additional terms that arise due to the adaptivity of the monotonically nonincreasing merit parameter sequence, the proved complexity bound is … Read more

Stochastic Look-Ahead Commitment: A Case Study in MISO

This paper introduces the Stochastic Look Ahead Commitment (SLAC) software prototyped and tested for the Midcontinent Independent System Operator (MISO) look ahead commitment process. SLAC can incorporate hundreds of wind, load and net scheduled interchange (NSI) uncertainty scenarios. It uses a progressive hedging method to solve a two-stage stochastic unit commitment. The first stage optimal … Read more

Adaptive Sampling Quasi-Newton Methods for Zeroth-Order Stochastic Optimization

We consider unconstrained stochastic optimization problems with no available gradient information. Such problems arise in settings from derivative-free simulation optimization to reinforcement learning. We propose an adaptive sampling quasi-Newton method where we estimate the gradients of a stochastic function using finite differences within a common random number framework. We develop modified versions of a norm … Read more

SABRINA: A Stochastic Subspace Majorization-Minimization Algorithm

A wide class of problems involves the minimization of a coercive and differentiable function $F$ on $\mathbb{R}^N$ whose gradient cannot be evaluated in an exact manner. In such context, many existing convergence results from standard gradient-based optimization literature cannot be directly applied and robustness to errors in the gradient is not necessarily guaranteed. This work … Read more

Decision Intelligence for Nationwide Ventilator Allocation

Many states in the U.S. have faced shortages of medical resources because of the surge in the number of patients suffering from COVID-19. As many projections indicate, the situation will be far worse in coming months. The upcoming challenge is not only due to the exponential growth in cases but also because of inherent uncertainty … Read more

Inexact Sequential Quadratic Optimization for Minimizing a Stochastic Objective Function Subject to Deterministic Nonlinear Equality Constraints

An algorithm is proposed, analyzed, and tested experimentally for solving stochastic optimization problems in which the decision variables are constrained to satisfy equations defined by deterministic, smooth, and nonlinear functions. It is assumed that constraint function and derivative values can be computed, but that only stochastic approximations are available for the objective function and its … Read more

A Stochastic Sequential Quadratic Optimization Algorithm for Nonlinear Equality Constrained Optimization with Rank-Deficient Jacobians

A sequential quadratic optimization algorithm is proposed for solving smooth nonlinear equality constrained optimization problems in which the objective function is defined by an expectation of a stochastic function. The algorithmic structure of the proposed method is based on a step decomposition strategy that is known in the literature to be widely effective in practice, … Read more

LSOS: Line-search Second-Order Stochastic optimization methods for nonconvex finite sums

We develop a line-search second-order algorithmic framework for minimizing finite sums. We do not make any convexity assumptions, but require the terms of the sum to be continuously differentiable and have Lipschitz-continuous gradients. The methods fitting into this framework combine line searches and suitably decaying step lengths. A key issue is a two-step sampling at … Read more

Stochastic Variance-Reduced Prox-Linear Algorithms for Nonconvex Composite Optimization

We consider the problem of minimizing composite functions of the form $f(g(x))+h(x)$, where~$f$ and~$h$ are convex functions (which can be nonsmooth) and $g$ is a smooth vector mapping. In addition, we assume that $g$ is the average of finite number of component mappings or the expectation over a family of random component mappings. We propose … Read more

Kernel Distributionally Robust Optimization

We propose kernel distributionally robust optimization (Kernel DRO) using insights from the robust optimization theory and functional analysis. Our method uses reproducing kernel Hilbert spaces (RKHS) to construct a wide range of convex ambiguity sets, including sets based on integral probability metrics and finite-order moment bounds. This perspective unifies multiple existing robust and stochastic optimization … Read more