Efficient Block-coordinate Descent Algorithms for the Group Lasso

We present two algorithms to solve the Group Lasso problem [Yuan & Lin]. First, we propose a general version of the Block Coordinate Descent (BCD) algorithm for the Group Lasso that employs an efficient approach for optimizing each subproblem. We show that it exhibits excellent performance when the groups are of moderate sizes. For large … Read more

Robust Timing of Markdowns

We propose an approach to the timing of markdowns over a finite time horizon that does not require the precise knowledge of the underlying probabilities, instead relying on range forecasts for the arrival rates of the demand processes, and that captures the degree of the manager’s risk aversion through intuitive budget-of-uncertainty functions. These budget functions … Read more

A Feasible method for Optimization with Orthogonality Constraints

Minimization with orthogonality constraints (e.g., $X^\top X = I$) and/or spherical constraints (e.g., $\|x\|_2 = 1$) has wide applications in polynomial optimization, combinatorial optimization, eigenvalue problems, sparse PCA, p-harmonic flows, 1-bit compressive sensing, matrix rank minimization, etc. These problems are difficult because the constraints are not only non-convex but numerically expensive to preserve during iterations. … Read more

Finding approximately rank-one submatrices with the nuclear norm and l1 norm

We propose a convex optimization formulation with the nuclear norm and $\ell_1$-norm to find a large approximately rank-one submatrix of a given nonnegative matrix. We develop optimality conditions for the formulation and characterize the properties of the optimal solutions. We establish conditions under which the optimal solution of the convex formulation has a specific sparse … Read more

Grothendieck inequalities for semidefinite programs with rank constraint

Grothendieck inequalities are fundamental inequalities which are frequently used in many areas of mathematics and computer science. They can be interpreted as upper bounds for the integrality gap between two optimization problems: A difficult semidefinite program with rank-1 constraint and its easy semidefinite relaxation where the rank constrained is dropped. For instance, the integrality gap … Read more

The Gomory-Chvatal closure of a non-rational polytope is a rational polytope

The question as to whether the Gomory-Chvatal closure of a non-rational polytope is a polytope has been a longstanding open problem in integer programming. In this paper, we answer this question in the affirmative, by combining ideas from polyhedral theory and the geometry of numbers. ArticleDownload View PDF

On the Lasserre hierarchy of semidefinite programming relaxations of convex polynomial optimization problems

The Lasserre hierarchy of semidefinite programming approximations to convex polynomial optimization problems is known to converge finitely under some assumptions. [J.B. Lasserre. Convexity in semialgebraic geometry and polynomial optimization. SIAM J. Optim. 19, 1995-2014, 2009.] We give a new proof of the finite convergence property, that does not require the assumption that the Hessian of … Read more

On the Chvtal-Gomory Closure of a Compact Convex Set

In this paper, we show that the Chatal-Gomory closure of a compact convex set is a rational polytope. This resolves an open question discussed in Schrijver 1980 and generalizes the same result for the case of rational polytopes (Schrijver 1980), rational ellipsoids (Dey and Vielma 2010) and strictly convex sets (Dadush et. al 2010). In … Read more

Improving the Performance of MIQP Solvers for Quadratic Programs with Cardinality and Minimum Threshold Constraints: A Semidefinite Program Approach

We consider in this paper quadratic programming problems with cardinality and minimum threshold constraints which arise naturally in various real-world applications such as portfolio selection and subset selection in regression. We propose a new semidefinite program (SDP) approach for computing the “best” diagonal decomposition that gives the tightest continuous relaxation of the perspective reformulation. We … Read more

Bundle-type methods uniformly optimal for smooth and nonsmooth convex optimization

The bundle-level method and their certain variants are known to exhibit an optimal rate of convergence, i.e., ${\cal O}(1/\sqrt{t})$, and also excellent practical performance for solving general non-smooth convex programming (CP) problems. However, this rate of convergence is significantly worse than the optimal one for solving smooth CP problems, i.e., ${\cal O}(1/t^2)$. In this paper, … Read more