Numerical estimation of the relative entropy of entanglement

We propose a practical algorithm for the calculation of the relative entropy of entanglement(REE), defined as the minimum relative entropy between a state and the set of states with positive partial transpose. Our algorithm is based on a practical semi-definite cutting plane approach. In low dimensions the implementation of the algorithm in MATLAB provides an … Read more

A Polynomial Arc-Search Interior-Point Algorithm for Convex Quadratic Programming

Arc-search is developed for linear programming in \cite{yang09, yang10}. The algorithms search for optimizers along an ellipse that are approximations of the central path. In this paper, the arc-search method is applied to primal-dual path-following interior-point method for convex quadratic programming. A simple algorithm with iteration complexity $O(\sqrt{n}\log(1/\epsilon))$ is devised. Several improvements on the simple … Read more

A Polynomial Arc-Search Interior-Point Algorithm for Linear Programming

In this paper, ellipse is used to approximate the central path of the linear programming. An interior-point algorithm is devised to search the optimizers along the ellipse. The algorithm is proved to be polynomial with the complexity bound $O(n^{\frac{1}{2}}\log(1/\epsilon))$. Numerical test is conducted for problems in Netlib. For most tested Netlib problems, the result shows … Read more

A Monotone+Skew Splitting Model for Composite Monotone Inclusions in Duality

The principle underlying this paper is the basic observation that the problem of simultaneously solving a large class of composite monotone inclusions and their duals can be reduced to that of finding a zero of the sum of a maximally monotone operator and a linear skew-adjoint operator. An algorithmic framework is developed for solving this … Read more

Cost-sharing mechanisms for scheduling under general demand settings

We investigate cost-sharing mechanisms for scheduling cost-sharing games. We assume that the demand is general—that is, each player can be allocated one of several levels of service. We show how to design mechanisms for these games that are weakly group strategyproof, approximately budget-balanced, and approximately efficient, using approximation algorithms for the underlying scheduling problems. We … Read more

A constraint sampling approach for multi-stage robust optimization

We propose a tractable approximation scheme for convex (not necessarily linear) multi-stage robust optimization problems. We approximate the adaptive decisions by finite linear combinations of prescribed basis functions and demonstrate how one can optimize over these decision rules at low computational cost through constraint randomization. We obtain a-priori probabilistic guarantees on the feasibility properties of … Read more

Band preconditioners for the matrix-free truncated Newton method

This report is devoted to preconditioning techniques for the matrix-free truncated Newton method. After a review of basic known pproaches, we propose ew results concerning tridiagonal and pentadiagonal preconditioners based on the standard BFGS updates and on numerical differentiation. Furthermore, we present results of extensive numerical experiments serving for the careful comparison of suitable preconditioning … Read more

Recursive formulation of limited memory variable metric methods

In this report we propose a new recursive matrix formulation of limited memory variable metric methods. This approach can be used for an arbitrary update from the Broyden class (and some other updates) and also for the approximation of both the Hessian matrix and its inverse. The new recursive formulation requires approximately $4 m n$ … Read more

Generalizations of the limited-memory BFGS method based on quasi-product form of update

Two families of limited-memory variable metric or quasi-Newton methods for unconstrained minimization based on quasi-product form of update are derived. As for the first family, four variants how to utilize the Strang recurrences for the Broyden class of variable metric updates are investigated; three of them use the same number of stored vectors as the … Read more

Reliable solution of convex quadratic programs with parametric active set methods

Parametric Active Set Methods (PASM) are a relatively new class of methods to solve convex Quadratic Programming (QP) problems. They are based on tracing the solution along a linear homotopy between a QP with known solution and the QP to be solved. We explicitly identify numerical challenges in PASM and develop strategies to meet these … Read more