Inexact projected gradient method for vector optimization

In this work, we propose an inexact projected gradient-like method for solving smooth constrained vector optimization problems. In the unconstrained case, we retrieve the steepest descent method introduced by Graña Drummond and Svaiter. In the constrained setting, the method we present extends the exact one proposed by Graña Drummond and Iusem, since it admits relative … Read more

Immunizing conic quadratic optimization problems against implementation errors

We show that the robust counterpart of a convex quadratic constraint with ellipsoidal implementation error is equivalent to a system of conic quadratic constraints. To prove this result we first derive a sharper result for the S-lemma in case the two matrices involved can be simultaneously diagonalized. This extension of the S-lemma may also be … Read more

Computing the Grothendieck constant of some graph classes

Given a graph $G=([n],E)$ and $w\in\R^E$, consider the integer program ${\max}_{x\in \{\pm 1\}^n} \sum_{ij \in E} w_{ij}x_ix_j$ and its canonical semidefinite programming relaxation ${\max} \sum_{ij \in E} w_{ij}v_i^Tv_j$, where the maximum is taken over all unit vectors $v_i\in\R^n$. The integrality gap of this relaxation is known as the Grothendieck constant $\ka(G)$ of $G$. We present … Read more

Optimal Design of Electrical Machines: Mathematical Programming Formulations

The optimal design of electrical machines can be mathematically modeled as a mixed-integer nonlinear optimization problem. We present six variants of such a problem, and we show, through extensive computational experiments, that, even though they are mathematically equivalent, the differences in the formulations may have an impact on the numerical performances of a local optimization … Read more

Think co(mpletely )positive ! Matrix properties, examples and a clustered bibliography on copositive optimization

Copositive optimization is a quickly expanding scientific research domain with wide-spread applications ranging from global nonconvex problems in engineering to NP-hard combinatorial optimization. It falls into the category of conic programming (optimizing a linear functional over a convex cone subject to linear constraints), namely the cone of all completely positive symmetric nxn matrices, and its … Read more

Copositive optimization – recent developments and applications

Due to its versatility, copositive optimization receives increasing interest in the Operational Research community, and is a rapidly expanding and fertile field of research. It is a special case of conic optimization, which consists of minimizing a linear function over a cone subject to linear constraints. The diversity of copositive formulations in different domains of … Read more

Multi-level Verticality Optimization: Concept, Strategies, and Drawing Scheme

In traditional multi-level graph drawing – known as Sugiyama’s framework – the number of crossings is considered one of the most important goals. Herein, we propose the alternative concept of optimizing the verticality of the drawn edges. We formally specify the problem, discuss its relative merits, and show that drawings that are good w.r.t. verticality … Read more

Exact Approaches to Multi-Level Vertical Orderings

We present a semide nite programming (SDP) approach for the problem of ordering vertices of a layered graph such that the edges of the graph are drawn as vertical as possible. This Multi-Level Vertical Ordering (MLVO) problem is a quadratic ordering problem and conceptually related to the well-studied problem of Multi-Level Crossing Minimization (MLCM). In contrast … Read more

AN OPTIMAL ALGORITHM FOR CONSTRAINED DIFFERENTIABLE CONVEX OPTIMIZATION

We describe three algorithms for solving differentiable convex optimization problems constrained to simple sets in $ \R^n $, i.e., sets on which it is easy to project an arbitrary point. The first two algorithms are optimal in the sense that they achieve an absolute precision of $ \varepsilon $ in relation to the optimal value … Read more

On semidefinite programming bounds for graph bandwidth

We propose two new lower bounds on graph bandwidth and cyclic bandwidth based on semidefinite programming (SDP) relaxations of the quadratic assignment problem. We compare the new bounds with two other SDP bounds in [A. Blum, G. Konjevod, R. Ravi, and S. Vempala, Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems, Theoretical Computer Science, … Read more