A splitting minimization method on geodesic spaces

We present in this paper the alternating minimization method on CAT(0) spaces for solving unconstraints convex optimization problems. Under the assumption that the function being minimize is convex, we prove that the sequence generated by our algorithm converges to a minimize point. The results presented in this paper are the first ones of this type … Read more

Time (in)consistency of multistage distributionally robust inventory models with moment constraints

Recently, there has been a growing interest in developing inventory control policies which are robust to model misspecification. One approach is to posit that nature selects a worst-case distribution for any relevant stochastic primitives from some pre-specified family. Several communities have observed that a subtle phenomena known as time inconsistency can arise in this framework. … Read more

On reducing a quantile optimization problem with discrete distribution to a mixed integer programming problem

We suggest a method for equivalent transformation of a quantile optimization problem with discrete distribution of random parameters to mixed integer programming problems. The number of additional integer (in fact boolean) variables in the equivalent problems equals to the number of possible scenarios for random data. The obtained mixed integer problems are solved by standard … Read more

Properly optimal elements in vector optimization with variable ordering structures

In this paper, proper optimality concepts in vector optimization with variable ordering structures are introduced for the first time and characterization results via scalarizations are given. New type of scalarizing functionals are presented and their properties are discussed. The scalarization approach suggested in the paper does not require convexity and boundedness conditions. CitationPreprint of the … Read more

Projection: A Unified Approach to Semi-Infinite Linear Programs and Duality in Convex Programming

Fourier-Motzkin elimination is a projection algorithm for solving finite linear programs. We extend Fourier-Motzkin elimination to semi-infinite linear programs which are linear programs with finitely many variables and infinitely many constraints. Applying projection leads to new characterizations of important properties for primal-dual pairs of semi-infinite programs such as zero duality gap, feasibility, boundedness, and solvability. … Read more

An adaptive accelerated proximal gradient method and its homotopy continuation for sparse optimization

We consider optimization problems with an objective function that is the sum of two convex terms: one is smooth and given by a black-box oracle, and the other is general but with a simple, known structure. We first present an accelerated proximal gradient (APG) method for problems where the smooth part of the objective function … Read more

Maxwell-Boltzmann and Bose-Einstein Distributions for the SAT Problem

Recent studies in theoretical computer science have exploited new algorithms and methodologies based on statistical physics for investigating the structure and the properties of the Satisfiability problem. We propose a characterization of the SAT problem as a physical system, using both quantum and classical statistical-physical models. We associate a graph to a SAT instance and … Read more

2-Stage Robust MILP with continuous recourse variables

We solve a linear robust problem with mixed-integer first-stage variables and continuous second stage variables. We consider column wise uncertainty. We first focus on a problem with right hand-side uncertainty which satisfies a “full recourse property” and a specific definition of the uncertainty. We propose a solution based on a generation constraint algorithm. Then we … Read more

On the Transportation Problem with Market Choice

We study a variant of the classical transportation problem in which suppliers with limited capacities have a choice of which demands (markets) to satisfy. We refer to this problem as the transportation problem with market choice (TPMC). While the classical transportation problem is known to be strongly polynomial-time solvable, we show that its market choice … Read more

On the evaluation complexity of constrained nonlinear least-squares and general constrained nonlinear optimization using second-order methods

When solving the general smooth nonlinear optimization problem involving equality and/or inequality constraints, an approximate first-order critical point of accuracy $\epsilon$ can be obtained by a second-order method using cubic regularization in at most $O(\epsilon^{-3/2})$ problem-functions evaluations, the same order bound as in the unconstrained case. This result is obtained by first showing that the … Read more