Perturbation of error bounds

Our aim in the current article is to extend the developments in Kruger, Ngai & Th\’era, SIAM J. Optim. 20(6), 3280–3296 (2010) and, more precisely, to characterize, in the Banach space setting, the stability of the local and global error bound property of inequalities determined by proper lower semicontinuous under data perturbations. We propose new … Read more

Convex Hull Characterizations of Lexicographic Orderings

Given a p-dimensional nonnegative, integral vector α, this paper characterizes the convex hull of the set S of nonnegative, integral vectors x that is lexicographically less than or equal to α. To obtain a finite number of elements in S, the vectors x are restricted to be component-wise upper-bounded by an integral vector u. We … Read more

Data-Driven Inverse Optimization with Imperfect Information

In data-driven inverse optimization an observer aims to learn the preferences of an agent who solves a parametric optimization problem depending on an exogenous signal. Thus, the observer seeks the agent’s objective function that best explains a historical sequence of signals and corresponding optimal actions. We focus here on situations where the observer has imperfect … Read more

On the Polyhedral Structure of Two-Level Lot-Sizing Problems with Supplier Selection

In this paper, we study a two-level lot-sizing problem with supplier selection (LSS). This NP-hard problem arises in different production planning and supply chain management applications. We first present a dynamic programming algorithm for LSS that is polynomial when the number of plants is fixed. We use this algorithm to describe the convex hull of … Read more

Solutions of a constrained Hermitian matrix-valued function optimization problem with applications

Let $f(X) =\left( XC + D\right)M\left(XC + D \right)^{*} – G$ be a given nonlinear Hermitian matrix-valued function with $M = M^*$ and $G = G^*$, and assume that the variable matrix $X$ satisfies the consistent linear matrix equation $XA = B$. This paper shows how to characterize the semi-definiteness of $f(X)$ subject to all … Read more

SMART: The Stochastic Monotone Aggregated Root-Finding Algorithm

We introduce the Stochastic Monotone Aggregated Root-Finding (SMART) algorithm, a new randomized operator-splitting scheme for finding roots of finite sums of operators. These algorithms are similar to the growing class of incremental aggregated gradient algorithms, which minimize finite sums of functions; the difference is that we replace gradients of functions with black-boxes called operators, which … Read more

Distributionally Robust Stochastic Programming

In this paper we study distributionally robust stochastic programming in a setting where there is a specified reference probability measure and the uncertainty set of probability measures consists of measures in some sense close to the reference measure. We discuss law invariance of the associated worst case functional and consider two basic constructions of such … Read more

Robust Nonparametric Testing for Causal Inference in Observational Studies

We consider the decision problem of making causal conclusions from observational data. Typically, using standard matched pairs techniques, there is a source of uncertainty that is not usually quanti fied, namely the uncertainty due to the choice of the experimenter: two di fferent reasonable experimenters can easily have opposite results. In this work we present an alternative … Read more

A framework for simultaneous aerodynamic design optimization in the presence of chaos

Integrating existing solvers for unsteady partial differential equations (PDEs) into a simultaneous optimization method is challenging due to the forward- in-time information propagation of classical time-stepping methods. This paper applies the simultaneous single-step one-shot optimization method to a reformulated unsteady PDE constraint that allows for both forward- and backward-in-time information propagation. Especially in the presence … Read more

Column Generation based Alternating Direction Methods for solving MINLPs

Traditional decomposition based branch-and-bound algorithms, like branch-and-price, can be very efficient if the duality gap is not too large. However, if this is not the case, the branch-and-bound tree may grow rapidly, preventing the method to find a good solution. In this paper, we present a new decompositon algorithm, called ADGO (Alternating Direction Global Optimization … Read more