Steplength selection in gradient projection methods for box-constrained quadratic programs

The role of the steplength selection strategies in gradient methods has been widely investigated in the last decades. Starting from the work of Barzilai and Borwein (1988), many efficient steplength rules have been designed, that contributed to make the gradient approaches an effective tool for the large-scale optimization problems arising in important real-world applications. Most … Read more

Implementation of an Interior Point Method with Basis Preconditioning

The implementation of a linear programming interior point solver is described that is based on iterative linear algebra. The linear systems are preconditioned by a basis matrix, which is updated from one interior point iteration to the next to bound the entries in a certain tableau matrix. The update scheme is based on simplex-type pivot … Read more

Distributionally Robust Optimization with Decision-Dependent Ambiguity Set

We introduce a new class of distributionally robust optimization problems under decision-dependent ambiguity sets. In particular, as our ambiguity sets we consider balls centered on a decision-dependent probability distribution. The balls are based on a class of earth mover’s distances that includes both the total variation distance and the Wasserstein metrics. We discuss the main … Read more

On the complexity of an Inexact Restoration method for constrained optimization

Recent papers indicate that some algorithms for constrained optimization may exhibit worst-case complexity bounds that are very similar to those of unconstrained optimization algorithms. A natural question is whether well established practical algorithms, perhaps with small variations, may enjoy analogous complexity results. In the present paper we show that the answer is positive with respect … Read more

Projective Splitting with Forward Steps only Requires Continuity

A recent innovation in projective splitting algorithms for monotone operator inclusions has been the development of a procedure using two forward steps instead of the customary proximal steps for operators that are Lipschitz continuous. This paper shows that the Lipschitz assumption is unnecessary when the forward steps are performed in finite-dimensional spaces: a backtracking linesearch … Read more

An inertial extrapolation method for convex simple bilevel optimization

We consider a scalar objective minimization problem over the solution set of another optimization problem. This problem is known as simple bilevel optimization problem and has drawn a significant attention in the last few years. Our inner problem consists of minimizing the sum of smooth and nonsmooth functions while the outer one is the minimization … Read more

An Inexact First-order Method for Constrained Nonlinear Optimization

The primary focus of this paper is on designing inexact first-order methods for solving large-scale constrained nonlinear optimization problems. By controlling the inexactness of the subproblem solution, we can significantly reduce the computational cost needed for each iteration. A penalty parameter updating strategy during the subproblem solve enables the algorithm to automatically detect infeasibility. Global … Read more

Clustering methods to find representative periods for the optimization of energy systems: an initial framework and comparison

Modeling time-varying operations in complex energy systems optimization problems is often computationally intractable, and time-series input data are thus often aggregated to representative periods. In this work, we introduce a framework for using clustering methods for this purpose, and we compare both conventionally-used methods (k-means, k-medoids, and hierarchical clustering), and shape-based clustering methods (dynamic time … Read more

Branch-and-cut-and-price for the robust capacitated vehicle routing problem with knapsack uncertainty

We examine the robust counterpart of the classical Capacitated Vehicle Routing Problem (CVRP). We consider two types of uncertainty sets for the customer demands: the classical budget polytope introduced by Bertsimas and Sim (2003), and a partitioned budget polytope proposed by Gounaris et al. (2013). We show that using the set-partitioning formulation it is possible … Read more