A smaller extended formulation for the odd cycle inequalities of the stable set polytope

For sparse graphs, the odd cycle polytope can be used to compute useful bounds for the maximum stable set problem quickly. Yannakakis introduced an extended formulation for the odd cycle inequalities of the stable set polytope in 1991, which provides a direct way to optimize over the odd cycle polytope in polynomial time, although there … Read more

Penalized stochastic gradient methods for stochastic convex optimization with expectation constraints

Stochastic gradient method and its variants are simple yet effective for minimizing an expectation function over a closed convex set. However, none of these methods are applicable to solve stochastic programs with expectation constraints, since the projection onto the feasible set is prohibitive. To deal with the expectation constrained stochastic convex optimization problems, we propose … Read more

An algorithm for optimization with disjoint linear constraints and its application for predicting rain

A specialized algorithm for quadratic optimization (QO, or, formerly, QP) with disjoint linear constraints is presented. In the considered class of problems, a subset of variables are subject to linear equality constraints, while variables in a different subset are constrained to remain in a convex set. The proposed algorithm exploits the structure by combining steps … Read more

Decentralized Online Integer Programming Problems with a Coupling Cardinality Constraint

We consider a problem involving a set of agents who need to coordinate their actions to optimize the sum of their objectives while satisfying a common resource constraint. The objective functions of the agents are unknown to them a priori and are revealed in an online manner. The resulting problem is an online optimization problem … Read more

An Average Curvature Accelerated Composite Gradient Method for Nonconvex Smooth Composite Optimization Problems

This paper presents an accelerated composite gradient (ACG) variant, referred to as the AC-ACG method, for solving nonconvex smooth composite minimization problems. As opposed to well-known ACG variants that are either based on a known Lipschitz gradient constant or a sequence of maximum observed curvatures, the current one is based on a sequence of average … Read more

Tight compact extended relaxations for nonconvex quadratic programming problems with box constraints

Cutting planes from the Boolean Quadric Polytope (BQP) can be used to reduce the optimality gap of the NP-hard nonconvex quadratic program with box constraints (BoxQP). It is known that all cuts of the Chvátal-Gomory closure of the BQP are A-odd cycle inequalities. We obtain a compact extended relaxation of all A-odd cycle inequalities, which … Read more

Simultaneous iterative solutions for the trust-region and minimum eigenvalue subproblem

Given the inability to foresee all possible scenarios, it is justified to desire an efficient trust-region subproblem solver capable of delivering any desired level of accuracy on demand; that is, the accuracy obtainable for a given trust-region subproblem should not be partially dependent on the problem itself. Current state-of-the-art iterative eigensolvers all fall into the … Read more

Two-row and two-column mixed-integer presolve using hash-based pairing methods

In state-of-the-art mixed-integer programming solvers, a large array of reduction techniques are applied to simplify the problem and strengthen the model formulation before starting the actual branch-and-cut phase. Despite their mathematical simplicity, these methods can have significant impact on the solvability of a given problem. However, a crucial property for employing presolving techniques successfully is … Read more

Derivative-Free Superiorization: Principle and Algorithm

The superiorization methodology is intended to work with input data of constrained minimization problems, that is, a target function and a set of constraints. However, it is based on an antipodal way of thinking to what leads to constrained minimization methods. Instead of adapting unconstrained minimization algorithms to handling constraints, it adapts feasibility-seeking algorithms to … Read more