Projected-Search Methods for Bound-Constrained Optimization

Projected-search methods for bound-constrained minimization are based on performing a line search along a continuous piecewise-linear path obtained by projecting a search direction onto the feasible region. A potential benefit of a projected-search method is that many changes to the active set can be made at the cost of computing a single search direction. As … Read more

Polyhedral Approximation Strategies in Nonconvex Mixed-Integer Nonlinear Programming

Different versions of polyhedral outer approximation is used by many algorithms for mixed-integer nonlinear programming (MINLP). While it has been demonstrated that such methods work well for convex MINLP, extending them to solve also nonconvex problems has been challenging. One solver based on outer linearization of the nonlinear feasible set of MINLP problems is the … Read more

Chi-Optimization – Novel Approach for Optimization under Uncertainty with Application on Forecast- and Decision Problems

We propose a novel approach for optimization and decision problems under uncertainty. We first describe it for stochastic optimization under distributional ambiguity with and without data for the random parameter. Distributional ambiguity means that an entire family $P$ of distributions is considered instead of a single one. For our approach, which avoids non-verifiable assumptions and … Read more

Continuous Cubic Formulations for Cluster Detection Problems in Networks

The celebrated Motzkin-Straus formulation for the maximum clique problem provides a nontrivial characterization of the clique number of a graph in terms of the maximum value of a nonconvex quadratic function over a standard simplex. It was originally developed as a way of proving Tur\'{a}n’s theorem in graph theory, but was later used to develop … Read more

Projection and rescaling algorithm for finding most interior solutions to polyhedral conic systems

We propose a simple projection and rescaling algorithm that finds {\em most interior} solutions to the pair of feasibility problems \[ \text{find} x\in L\cap \R^n_{+} \text{ and } \text{find} \; \hat x\in L^\perp\cap\R^n_{+}, \] where $L$ is a linear subspace of $\R^n$ and $L^\perp$ is its orthogonal complement. The algorithm complements a basic procedure that … Read more

The Magic of Nash Social Welfare in Optimization: Do Not Sum, Just Multiply!

In this paper, we explain some key challenges when dealing with a single/multi-objective optimization problem in practice. To overcome these challenges, we present a mathematical program that optimizes a Nash Social Welfare function. We refer to this mathematical program as the Nash Social Welfare Program (NSWP). An interesting property of the NSWP is that it … Read more

The Value of Randomized Strategies in Distributionally Robust Risk Averse Network Interdiction Games

Conditional Value at Risk (CVaR) is widely used to account for the preferences of a risk-averse agent in the extreme loss scenarios. To study the effectiveness of randomization in interdiction games with an interdictor that is both risk and ambiguity averse, we introduce a distributionally robust network interdiction game where the interdictor randomizes over the … Read more

Variable Smoothing for Weakly Convex Composite Functions

We study minimization of a structured objective function, being the sum of a smooth function and a composition of a weakly convex function with a linear operator. Applications include image reconstruction problems with regularizers that introduce less bias than the standard convex regularizers. We develop a variable smoothing algorithm, based on the Moreau envelope with … Read more

An explicit Tikhonov algorithm for nested variational inequalities

We consider nested variational inequalities consisting in a (upper-level) variational inequality whose feasible set is given by the solution set of another (lower-level) variational inequality. Purely hierarchical convex bilevel optimization problems and certain multi-follower games are particular instances of nested variational inequalities. We present an explicit and ready-to-implement Tikhonov-type solution method for such problems. We … Read more

Implicit steepest descent algorithm for optimization with orthogonality constraints

Optimization with orthogonality constraints problems appear widely in applications from science and engineering. We address these types of problems from an numerical approach. Our new framework combines the steepest gradient descent using implicit information with and operator projection in order to construct a feasible sequence of points. In addition, we adopt an adaptive Barzilai–Borwein steplength … Read more