Moreau envelope of supremum functions with applications to infinite and stochastic programming

In this paper, we investigate the Moreau envelope of the supremum of a family of convex, proper, and lower semicontinuous functions. Under mild assumptions, we prove that the Moreau envelope of a supremum is the supremum of Moreau envelopes, which allows us to approximate possibly nonsmooth supremum functions by smooth functions that are also the … Read more

Planar Maximum Coverage Location Problem with Partial Coverage, Continuous Spatial Demand, and Adjustable Quality of Service

We consider a generalization of the classical planar maximum coverage location problem (PMCLP) in which partial coverage is allowed, facilities have adjustable quality of service (QoS) or service range, and demand zones and service zone of each facility are represented by two-dimensional spatial objects such as rectangles, circles, polygons, etc. We denote this generalization by … Read more

Select, Route and Schedule: Optimizing Community Paramedicine Service Delivery with Mandatory Visits and Patient Prioritization

Healthcare delivery in the United States has been characterized as overly reactive and dependent on emergency department care for safety net coverage, with opportunity for improvement around discharge planning and high readmissions and emergency department bounce-back rates. Community paramedicine is a recent healthcare innovation that enables proactive visitation of patients at home, often shortly after … Read more

Polyhedral Analysis of Symmetric Multilinear Polynomials over Box Constraints

It is well-known that the convex and concave envelope of a multilinear polynomial over a box are polyhedral functions. Exponential-sized extended and projected formulations for these envelopes are also known. We consider the convexification question for multilinear polynomials that are symmetric with respect to permutations of variables. Such a permutation-invariant structure naturally implies a quadratic-sized … Read more

On the Integrality Gap of Binary Integer Programs with Gaussian Data

For a binary integer program (IP) $\max c^\T x, Ax \leq b, x \in \{0,1\}^n$, where $A \in \R^{m \times n}$ and $c \in \R^n$ have independent Gaussian entries and the right-hand side $b \in \R^m$ satisfies that its negative coordinates have $\ell_2$ norm at most $n/10$, we prove that the gap between the value … Read more

A dynamic programming approach to segmented isotonic regression

This paper proposes a polynomial-time algorithm to construct the monotone stepwise curve that minimizes the sum of squared errors with respect to a given cloud of data points. The fitted curve is also constrained on the maximum number of steps it can be composed of and on the minimum step length. Our algorithm relies on … Read more

ALSO-X and ALSO-X+: Better Convex Approximations for Chance Constrained Programs

In a chance constrained program (CCP), the decision-makers aim to seek the best decision whose probability of violating the uncertainty constraints is within the prespecified risk level. As a CCP is often nonconvex and is difficult to solve to optimality, much effort has been devoted to developing convex inner approximations for a CCP, among which … Read more

Pareto Adaptive Robust Optimality via a Fourier-Motzkin Elimination Lens

We formalize the concept of Pareto Adaptive Robust Optimality (PARO) for linear Adaptive Robust Optimization (ARO) problems. A worst-case optimal solution pair of here-and-now decisions and wait-and-see decisions is PARO if it cannot be Pareto dominated by another solution, i.e., there does not exist another such pair that performs at least as good in all … Read more

A Distributed and Secure Algorithm for Computing Dominant SVD Based on Projection Splitting

In this paper, we propose and study a distributed and secure algorithm for computing dominant (or truncated) singular value decompositions (SVD) of large and distributed data matrices. We consider the scenario where each node privately holds a subset of columns and only exchanges “safe” information with other nodes in a collaborative effort to calculate a … Read more

Accelerating Inexact Successive Quadratic Approximation for Regularized Optimization Through Manifold Identification

For regularized optimization that minimizes the sum of a smooth term and a regularizer that promotes structured solutions, inexact proximal-Newton-type methods, or successive quadratic approximation (SQA) methods, are widely used for their superlinear convergence in terms of iterations. However, unlike the counter parts in smooth optimization, they suffer from lengthy running time in solving regularized … Read more