Linear-size formulations for connected planar graph partitioning and political districting

Motivated by applications in political districting, we consider the task of partitioning the n vertices of a planar graph into k connected components. We propose an extended formulation that has two desirable properties: (i) it uses just O(n) variables, constraints, and nonzeros, and (ii) it is perfect. To explore its ability to solve real-world problems, … Read more

An Efficient Pixel-based Packing Algorithm for Additive Manufacturing Production Planning

Additive Manufacturing (AM), the technology of rapid prototyping directly from 3D digital models, has made a significant impact on both academia and industry. When facing the growing demand of AM services, AM production planning (AMPP) plays a vital role in reducing makespan and costs for AM service companies. This research focuses on the AMPP problem … Read more

D-optimal Data Fusion: Exact and Approximation Algorithms

We study the D-optimal Data Fusion (DDF) problem, which aims to select new data points, given an existing Fisher information matrix, so as to maximize the logarithm of the determinant of the overall Fisher information matrix. We show that the DDF problem is NP-hard and has no constant-factor polynomial-time approximation algorithm unless P = NP. … Read more

A primal-dual majorization-minimization method for large-scale linear programs

We present a primal-dual majorization-minimization method for solving large-scale linear programs. A smooth barrier augmented Lagrangian (SBAL) function with strict convexity for the dual linear program is derived. The majorization-minimization approach is naturally introduced to develop the smoothness and convexity of the SBAL function. Our method only depends on a factorization of the constant matrix … Read more

The Hyperbolic Augmented Lagrangian Algorithm

The hyperbolic augmented Lagrangian algorithm (HALA) is introduced in the area of continuous optimization for solving nonlinear programming problems. Under mild assumptions, such as: convexity, Slater’s qualification and differentiability, the convergence of the proposed algorithm is proved. We also study the duality theory for the case of the hyperbolic augmented Lagrangian function. Finally, in order … Read more

Large independent sets in Markov random graphs

Computing the maximum size of an independent set in a graph is a famously hard combinatorial problem that has been well-studied for various classes of graphs. When it comes to random graphs, only the classical binomial random graph \(G_{n,p}\) has been analysed and shown to have largest independent sets of size \(\Theta(\log{n})\) w.h.p. This classical … Read more

A Strengthened SDP Relaxation for Quadratic Optimization Over the Stiefel Manifold

We study semidefinite programming (SDP) relaxations for the NP-hard problem of globally optimizing a quadratic function over the Stiefel manifold. We introduce a strengthened relaxation based on two recent ideas in the literature: (i) a tailored SDP for objectives with a block-diagonal Hessian; (ii) and the use of the Kronecker matrix product to construct SDP relaxations. Using synthetic instances on … Read more

Computing Tchebychev weight space decomposition for multiobjective discrete optimization problems

Multiobjective discrete optimization (MODO) techniques, including weight space decomposition, have received increasing attention in the last decade. The primary weight space decomposition technique in the literature is defined for the weighted sum utility function, through which sets of weights are assigned to a subset of the nondominated set. Recent work has begun to study the … Read more

A copositive framework for analysis of hybrid Ising-classical algorithms

Recent years have seen significant advances in quantum/quantum-inspired technologies capable of approximately searching for the ground state of Ising spin Hamiltonians. The promise of leveraging such technologies to accelerate the solution of difficult optimization problems has spurred an increased interest in exploring methods to integrate Ising problems as part of their solution process, with existing … Read more

Ordering integers under different permutations

The question of finding the largest integer contained between two given lists of integers is trivial when integer ordering is interpreted in its usual way. We propose a nontrivial variant wherein each ordering comparison is performed after integers have been mapped under some bijection, and analyze the computational complexity of our combinatorial problem under a … Read more