A Test Instance Generator for Multiobjective Mixed-integer Optimization

Application problems can often not be solved adequately by numerical algorithms as several difficulties might arise at the same time. When developing and improving algorithms which hopefully allow to handle those difficulties in the future, good test instances are required. These can then be used to detect the strengths and weaknesses of different algorithmic approaches. … Read more

Political districting to minimize county splits

When partitioning a state into political districts, a common criterion is that political subdivisions like counties should not be split across multiple districts. This criterion is encoded into most state constitutions and is sometimes enforced quite strictly by the courts. However, map drawers, courts, and the public typically do not know what amount of splitting … Read more

A successive centralized circumcentered-reflection method for the convex feasibility problem

In this paper, we present a successive centralization process for the circumcentered-reflection scheme with several control sequences for solving the convex feasibility problem in Euclidean space. Assuming that a standard error bound holds, we prove the linear convergence of the method with the most violated constraint control sequence. Moreover, under additional smoothness assumptions on the … Read more

Variable Selection for Kernel Two-Sample Tests

We consider the variable selection problem for two-sample tests, aiming to select the most informative variables to distinguish samples from two groups. To solve this problem, we propose a framework based on the kernel maximum mean discrepancy (MMD). Our approach seeks a group of variables with a pre-specified size that maximizes the variance-regularized MMD statistics. … Read more

Robust Two-Dose Vaccination Schemes and the Directed b-Matching Problem

In light of the recent pandemic and the shortage of vaccinations during their roll-out, questions arose regarding the best strategy to achieve immunity throughout the population by adjusting the time gap between the two necessary vaccination doses. This strategy has already been studied from different angles by various researches. However, the deliveries of vaccination doses … Read more

A Sequential Quadratic Programming Method for Optimization with Stochastic Objective Functions, Deterministic Inequality Constraints and Robust Subproblems

In this paper, a robust sequential quadratic programming method of Burke and Han (Math Programming, 1989)  for constrained optimization is generalized to problem with stochastic objective function, deterministic equality and inequality constraints. A stochastic line search scheme in Paquette and Scheinberg (SIOPT, 2020) is employed to globalize the steps. We show that in the case … Read more

Multilevel Objective-Function-Free Optimization with an Application to Neural Networks Training

A class of multi-level algorithms for unconstrained nonlinear optimization is presented which does not require the evaluation of the objective function. The class contains the momentum-less AdaGrad method as a particular (single-level) instance. The choice of avoiding the evaluation of the objective function is intended to make the algorithms of the class less sensitive to … Read more

On solving the MAX-SAT using sum of squares

We consider semidefinite programming (SDP) approaches for solving the maximum satisfiabilityproblem (MAX-SAT) and the weighted partial MAX-SAT. It is widely known that SDP is well-suitedto approximate the (MAX-)2-SAT. Our work shows the potential of SDP also for other satisfiabilityproblems, by being competitive with some of the best solvers in the yearly MAX-SAT competition.Our solver combines … Read more

Polynomial argmin for recovery and approximation of multivariate discontinuous functions

We propose to approximate a (possibly discontinuous) multivariate function f(x) on a compact set by the partial minimizer arg min_y p(x,y) of an appropriate polynomial p whose construction can be cast in a univariate sum of squares (SOS) framework, resulting in a highly structured convex semidefinite program. In a number of non-trivial cases (e.g. when … Read more